
- •1.Современные системы телекоммуникаций
- •2. Построение сетей электросвязи
- •2.1. Принципы построения сетей связи
- •2.2. Магистральные и зоновые сети связи
- •2.3. Городские телефонные сети
- •2.4. Сети сельской телефонной связи и проводного вещания
- •4. Коаксиальные кабели
- •4.1. Электрические процессы в коаксиальных цепях
- •4.2. Передача энергии по коаксиальной цепи с учетом потерь в проводниках
- •4.3. Емкость и проводимость изоляции коаксиальных цепей
- •4.4. Вторичные параметры передачи коаксиальных цепей
- •4.5. Оптимальное соотношение диаметров проводников коаксиальной цепи
- •4.6. Конструктивные неоднородности в коаксиальных кабелях
- •5. Симметричные кабели
- •5.1. Электрические процессы в симметричных цепях
- •5.2. Передача энергии по симметричной цепи с учетом потерь
- •5.3. Емкость и проводимость изоляции симметричной цепи
- •5.4. Параметры цепей воздушных линий связи
- •5.5. Основные зависимости первичных параметров симметричных цепей
- •5.6. Вторичные параметры симметричных цепей
- •6. Волноводы
- •6.1. Физические процессы, происходящие в волноводах
- •7. Оптические кабели
- •7.1. Развитие волоконно-оптической связи
- •7.2. Достоинства оптических кабелей и область их применения
- •7.3. Физические процессы в волоконных световодах
- •6.4. Лучевая теория световодов
- •7.5. Волновая теория световодов
- •7.6. Потери энергии и затухание
- •7.8. Дисперсия и пропускная способность
- •Глава 8. Заимные влияния и помехозащищенность цепей в линиях связи
- •8.1. Проблема электромагнитной совместимости в линиях связи
- •8.4. Косвенные влияния между цепями
- •8.5. Влияния в коаксиальных кабелях
- •8.6. Нормы на параметры взаимных влияний
- •8.7. Меры защиты цепей и трактов линии связи от взаимных влиянии
- •8.9. Симметрирование высокочастотных кабелей
- •9. Проектирование линейных сооружении связи
- •9.1. Организация проектирования линейных сооружении связи
- •9.2. Этапы проектирования
- •9.3. Оптимизация методов проектирования линий и сетей связи
- •9.5. Технология реального проектирования лсс
- •9.6. Выбор системы передачи, типа линии связи, марки кабеля и трассы строительства
- •9.7. Определение мест установки нуп и длин ретрансляционных участков кабельных магистралей
- •9.8. Рабочие чертежи
- •9.9. Основные положения проектирования подсистем кабельных магистралей
- •9.10. Распределение абонентов по территории города и выбор места расположения станций
- •9.11. Выбор емкости шкафа и проектирование распределительной сети гтс
- •9.12. Проектирование магистральной кабельной сети и канализации гтс
- •9.13. Многоканальные соединительные линии гтс
- •9.14. Перспективы развития методов проектирования сетей гтс
- •Глава 10. Строительство линейных сооружении связи
- •10.1. Прокладка кабельных линий связи
- •10.1.1. Подготовительные работы
- •10.1.2. Подготовка кабеля к прокладке
- •10.1.3. Группирование строительных длин
- •10.1.5. Прокладка подземных кабелей
- •10.1.7. Установка замерных столбиков
- •10.1.8. Механизация строительства
- •10.1.12. Прокладка подводных кабелей
- •10.1.13. Особенности прокладки оптических кабелей
- •Глава 11. Защита сооружений связи от внешних влияний и коррозии
- •11.1. Теория влияния
- •11.1.1. Физическая сущность и источники электромагнитного влияния на цепи связи
- •11.1.2. Виды и классификация внешних влиянии
- •11.1.3. Влияние атмосферного электричества
- •11.1.4. Влияние линии электропередачи
- •11.1.5. Влияние электрифицированных железных дорог
- •11.1.7. Нормы опасных и мешающих влиянии
- •11.1.8. Расчет опасного электрического влияния
- •11.1.9. Расчет опасного магнитного влияния
- •11.1.10. Расчет мешающих влияний
- •11.1.11. Влияние радиостанций на линии связи
- •11.2. Защита сооружений связи
- •11.2.3. Каскадная защита и молниеотводы
- •11.2.4. Защита от грозы кабельных линий
- •11.2.5. Экранирующие тросы
- •11.2.6. Редукционные и отсасывающие трансформаторы
- •11.2.7. Устройство заземлений
- •11.3. Экранирование кабелей связи
- •11.3.1. Применение экранов
- •11.3.3. Электромагнитостатическое экранирование
- •11.3.4. Электромагнитное экранирование
- •11.3.5. Волновой режим экранирования
- •11.3.7. Экранирующий эффект с учетом продольных токов
- •12. Полосковые линии передачи
- •12.1. Введение
- •12.2. Симметричная полосковая линия передачи
- •12.3. Несимметричная полосковая линия передачи
- •12.4. Щелевая линия
- •12.5. Копланарная полосковая линия
- •12.6. Связанные полосковые линии
- •13. Конструкции и характеристики линий связи
- •13.1. Электрические кабели связи
- •13.1.1. Классификация и маркировка кабелей
- •13.1.2. Проводники
- •13.1.3. Изоляция
- •13.1.4. Типы скруток в группы
- •13.1.6. Защитные оболочки
- •13.1.7. Защитные бронепокровы
- •13.1.8. Междугородные коаксиальные кабели
- •13.1.9. Междугородные симметричные кабели
- •13.1.10. Зоновые (внутриобластные) кабели
- •13.1.11. Городские телефонные кабели
- •13.1.12. Кабели сельской связи и проводного вещания
- •13.2. Оптические кабели связи
- •13.2.1. Классификация оптических кабелей связи
- •13.2.2. Оптические волокна и особенности их изготовления
- •13.2.3. Конструкции оптических кабелей
- •13.2.4. Оптические кабели отечественного производства
11.1.5. Влияние электрифицированных железных дорог
Контактные сети магистральных и пригородных электрифицированных железных дорог, трамвая, троллейбуса (рис. 11.8) также оказывают влияние на линии связи. Напряжения в контактных сетях постоянного тока: трамваи и троллейбусы - 0,6 кВ, пригородная эл. ж. д. - 3,3 кВ. Напряжения в сетях переменного тока магистральных эл. ж. д. 25 кВ.
Электрифицированный
транспорт представляет собой однопроводную
несимметричную систему с использованием
земли (рельсов) в качестве обратного
провода, в которой протекает сильный
неуравновешенный ток и возникает сильное
магнитное влияние ().
Ток в контактных сетях эл. ж. д. может
достигать нескольких сотен ампер.
Электрифицированный транспорт является источником и опасного, и мешающего влияний на ЛС. Наряду с магнитным существует гальваническое влияние.
Электрифицированные железные дороги переменного тока влияют в основном на частоте 50 Гц и в диапазоне тональных частот; эл. ж. д. постоянного тока за счет высших гармонических составляющих при выпрямлении тока действуют как в тональном, так и в высокочастотном диапазоне (до 30 кГц).
Сравнивая агрессивное воздействие на ЛС линий электропередачи и эл. ж. д., можно установить (табл. 11.2), что эл. ж. д., как однопроводная система, оказывает существенно более сильное и длительное влияние, чем ЛЭП.
Таблица 11.2
Показатель |
ЛЭП |
Эл. ж. д. |
Трасса |
Неизвестна |
Известна |
Длительность действия |
Кратковременно |
Длительное |
Схема влияния |
Симметричная |
Несимметричная |
Сила влияния (условная единица) |
1 |
10-20 |
Рис. 11.8. Электрифицированная железная дорога.
Однако протяженность ЛЭП по стране значительно больше, и, кроме того, при новом строительстве часто неизвестно, где пройдет трасса этих линий, поэтому существенно сложнее обеспечить должную защиту от них.
Таблица 11.3
Параметр |
Грунт | |||||
слабый чернозем |
глина |
суглинок |
известняк |
песок |
Гранит | |
Удельная проводимость, См/м |
0,2 |
0,1 |
0,05 |
0,02 |
0,01 |
0,001 |
Критические расстояния, м |
200/300 |
260/3100 |
350/560 |
480/830 |
600/1200 |
14100 /3800 |
Примечание. В числителе указано значение для эл ж. д., а в знаменателе - для ЛЭП.
В табл. 11.3 приведены допустимые критические расстояния, м (средние значения), сближения кабеля связи (МКСБ-4х4) с ЛЭП и эл. ж. д. Из таблицы видно, что чем хуже грунт, т. е. меньше его удельная проводимость, тем дальше надо относить трассу кабеля от ЛЭП и эл. ж. д.
11.1.6. ОСОБЕННОСТИ ВЛИЯНИЯ НА ВОЗДУШНЫЕ И КАБЕЛЬНЫЕ ЛИНИИ СВЯЗИ
Природа внешних электромагнитных влияний на воздушные и кабельные ЛС различна (рис. 11.9). На воздушные линии действуют одновременно как электрическое поле, так и магнитное. На кабельные линии оказывает влияние только магнитное поле. Силовые линии электрического поля замыкаются на металлическую оболочку кабеля и землю и не проходят в сердечник кабеля. Магнитное влияние на кабельные линии снижается за счет экранирующего действия кабельной оболочки. Кабельные линии, находящиеся в земле, и воздушные линии, работающие по системе «провод—земля», испытывают также гальваническое влияние.
Рис. 11.9. Особенности влияния на линии связи: а - воздушные; б – кабельные.