
Языки программирования / Книги / ob''ektno-orientirovannyj_analiz_i_proektirovanie
.pdfОбъектно-ориентированный анализ и проектирование |
391 |
Отслеживание маршрутов движения поездов осуществляется с помощью подключенных к сети передачи данных ответчиков местоположения и глобальной спутниковой системы указания местоположения (GPS, Global Positioning System) Navstar. Система анализа и отображения информации на локомотиве может вычислять пройденный путь с помощью счетчика, подсчитывающего число оборотов колеса. Эта информация дополняется данными ответчиков местоположения, которые размещены через каждый километр пути или чаще (на важнейших развилках). Ответчики передают информацию о себе на проходящие поезда (используя блок управления данными), что позволяет более точно определить местоположение. Кроме того, поезд может быть оснащен приемниками GPS, с помощью которых его географическое положение может быть определено с точностью до метра.
Блок интерфейса путевых устройств размещается там, где есть какое-либо управляемое устройство (например, стрелка), или датчик (например, инфракрасный датчик для обнаружения перегрева подвесок колес). Каждый блок интерфейса получает команды (например, команды на включение и выключение сигнала) от локального наземного контроллера. Устройства могут быть переведены в ручной режим управления. Кроме того, каждое устройство может сообщать свои установочные параметры. Наземный контроллер транслирует информацию на блоки интерфейса путевых устройств и обратно, а также на проходящие мимо поезда и обратно. Контроллеры расположены вдоль железнодорожного пути через такие расстояния, чтобы любой поезд всегда находился в зоне действия хотя бы одного из них.
Каждый наземный контроллер передает свою информацию на объединенную систему управления сетью. Связь между системой управления сетью и наземным контроллером может осуществляться по радио в микроволновом диапазоне, по наземным линиям или по оптоволокну в зависимости от удаленности данного контроллера. Система управления сетью обеспечивает функционирование всей сети. Она может автоматически направлять информацию по другому маршруту в сети, если на одном из путей произойдет отказ оборудования,
Система управления сетью, в свою очередь, подсоединяется к одному или нескольким диспетчерским центрам, которые объединены в систему управления операциями. Система управления сетью соединена и с другими пользователями. В системе управления операциями диспетчеры могут задавать маршруты поездов и отслеживать их передвижение. Для управления различными участками выделяются отдельные диспетчеры; каждая диспетчерская управляющая консоль отвечает за одну или несколько территорий. Маршрутизация поездов подразумевает выдачу инструкций для автоматического перевода поезда с пути на путь, установку ограничения скорости, управление пропуском автомобилей на переездах, разрешение и запрещение движения поезда в зависимости от занятости определенных участков пути. Диспетчеры могут наблюдать за состоянием путей впереди по маршруту поезда и передавать эту информацию машинисту. Поезда могут быть остановлены системой управления операциями (вручную диспетчерами или автоматически), когда обнаруживается опасность (выход поезда из графика, повреждение пути, возможность столкновения). Диспетчеры могут также вызвать на экран любую информацию, доступную машинистам отдельных поездов, разослать распоряжения по движению, установить параметры путевых устройств и пересмотреть план движения.
Расположение путей и путевое оборудование могут со временем меняться. Число поездов и маршруты их движения могут изменяться ежедневно. Система должна обеспечивать
392 |
Объектно-ориентированный анализ и проектирование |
возможность подключения новых датчиков, сетей и оборудования, выполненных по более совершенным технологиям.
На врезке сформулированы основные требования к системе управления движением поездов. Очевидно, они сильно упрощены. На практике детальные требования к большой системе вырабатываются после демонстрации жизнеспособности программного решения проблемы. При этом анализ отменяет сотни человеко-месяцев труда с участием экспертов в данной области и пользователей системы. В конечном счете требования к системе могут состоять из тысяч страниц документации, специфицирующей не только базовое поведение, но и такие детали, как макеты форм интерфейса.
Но даже исходя из наших упрощенных требований, мы можем сделать два замечания о разработке системы управления движением:
•Архитектура должна быть открыта для развития.
•Реализация должна опираться на существующие стандарты.
Наш опыт разработки больших систем показывает, что первоначальная формулировка требований никогда не бывает полной, она всегда в некоторой степени неопределенна и противоречива. Соответственно, мы должны быть готовы управлять возникающими в процессе разработки неопределенностями. Мы настоятельно рекомендуем осуществлять эволюцию подобных систем в виде пошагового, итеративного процесса. Как уже говорилось в главе 7, сам цикл разработки дает пользователям и разработчикам возможность понять, какие требования на самом деле существенны; именно процесс разработки, а не упражнения в чистописании спецификаций в отсутствии готовой частичной реализации или прототипа. Кроме того, необходимо учитывать, что на создание большой системы может быть затрачено несколько лет. За это время сильно изменится аппаратная часть [В действительности для многих систем такого уровня сложности характерно, что в них входят компьютеры самых разнообразных типов. Хорошо продуманная и стабильная архитектура смягчает риск смены техники в процессе разработки, которая сплошь и рядом происходит в быстро меняющемся компьютерном мире. Новые модели приходят и уходят, поэтому важно четко представлять границу между техникой и программами, чтобы можно было ввести в систему новые компьютеры или контроллеры, снижающие затраты или улучшающие характеристики работы, и сохранить при этом целостность архитектуры]. Поэтому требования к программе должны предусматривать адаптацию к новой технике. Бессмысленно создавать элегантную архитектуру для аппаратуры, которая гарантированно устареет за время разработки. Мы считаем, что в архитектуру программной системы следует включать только те аппаратные особенности, которые непосредственно опираются на существующие стандарты: связь, сети передачи данных, графику и протокол работы датчиков. Для совершенно новых систем иногда Приходится становиться первопроходцами аппаратных и программных средств. Это приводит к повышению риска, который для большинства систем и без того высок. Разработка программного обеспечения, особенно, когда речь идет об успешном завершении большого приложения, неизбежно связана с риском, и наша цель - снизить этот риск до минимума.
Очевидно, что мы не сможем подробно рассмотреть все вопросы анализа и проектирования описанной системы в одной главе или даже в одной книге. Так как наша задача - показать, как работают обозначения и методология, сосредоточимся на построении гибкой архитектуры изучаемой области.
Системные и программные требования: хрупкий компромисс

Объектно-ориентированный анализ и проектирование |
393 |
Крупные проекты, подобные рассматриваемому, обычно организуются вокруг небольшой центральной группы, ответственной за глобальную архитектуру системы, а сама разработка передается сторонним субподрядчикам или другим группам внутри той же организации. Уже на стадии анализа системные архитекторы имеют некоторую концептуальную модель, которая разделяет аппаратную и программную части реализации. Многие, правда, считают, что это уже не анализ, а проектирование. Это - спорный вопрос. В самом деле, трудно решить, что показано на схеме рис. 12-1- исходные требования или проект системы. Но в любом случае схема предполагает, что на данной стадии разработки архитектура системы принципиально объектно-ориентированна. Например, на схеме присутствуют такие сложные объекты, как система управления энергией или система управления операциями. Каждый из них выполняет одну из основных функций всей системы. Это как раз то, о чем говорилось в главе 4: объекты самого высокого уровня абстракции отвечают за основные функции системы. Поэтому процесс анализа в данном случае мало отличается от процесса проектирования.
Когда мы уже имеем скелет архитектуры (как на рис. 12-1), можно с помощью экспертов в данной прикладной области приступать к разработке основных сценариев поведения системы, как это было описано в главе 6. Чтобы подробнее описать ожидаемое поведение системы, можно использовать диаграммы взаимодействия, диаграммы объектов, протоколы действий или прототипы. На рис. 12-2 приведена диаграмма взаимодействия компонент системы, отражающая сценарий подготовки ежедневных приказов по движению поездов. На данном уровне анализа нас интересуют именно основные события и взаимодействия, определяющие поведение системы. Такие детали, как сигнатуры операций и ассоциации - это тактические подробности, которые понадобятся на последующих фазах проектирования.
В системе таких размеров запросто можно найти сотни первичных сценариев [Мы встречали проекты программных систем, в которых одни только результаты анализа занимали больше 8000 страниц документации - несомненный знак слишком ревностного анализа. Начинающийся с этого проект редко бывает удачным]. В главе 6 мы уже установили "правило 80%". Это значит, что до перехода к проектированию архитектуры желательно зафиксировать 80% важнейших сценариев. Дожидаться 100% готовности бессмысленно.
Рис. 12-2. Подготовка ежедневных приказов по движению.
Очевидно, нужно перевести требования к системе на язык требований к ее программной и аппаратной частям, чтобы различные компетентные организации могли одновременно заниматься отдельными частями задачи (но обязательно под присмотром некоторой центральной группы, обеспечивающей общее видение проекта). Совместное создание аппаратного и программного обеспечения - сложная задача, особенно, если эти части слабо связаны и создаются разными фирмами. Иногда ясно, какая аппаратура будет использоваться. Например, можно использовать готовые терминалы или рабочие станции

394 |
Объектно-ориентированный анализ и проектирование |
для бортовых дисплейных систем и в центрах управления операциями. Аналогично, представляется вполне очевидным, что составлением расписаний поездов занимаются программы. Окончательное решение о том, какую основу, аппаратную или программную, использовать в каждом конкретном случае, зависит от предпочтений разработчиков не меньше, чем от всего остального. Специализированную аппаратуру можно использовать, когда важнее производительность, а использование программ целесообразнее, когда необходимо обеспечить гибкость.
Будем считать, что первоначальный вариант аппаратной архитектуры выбран архитекторами системы. Этот выбор не должен считаться окончательным, но по крайней мере он дает отправную точку для уточнения требований к программному обеспечению. В ходе анализа, а затем и проектирования, нам необходима свобода в выборе аппаратной или программной реализации той или иной функции: позднее может оказаться, что нужна дополнительная аппаратура, или что данную функцию можно реализовать программно.
Рис. 12-3. Диаграмма процессов системы управления движением.
На рис. 12-3 показано целевое аппаратное обеспечение для системы управления движением; здесь используются наши обозначения для диаграмм процессов. Эта архитектура процессов соответствует схеме на рис. 12-1. В частности, предусмотрен один бортовой компьютер на каждом поезде, соединяющий систему сбора и передачи информации о локомотиве, систему управления энергией, бортовой дисплей и устройство управления данными. Мы предполагаем, что некоторые бортовые устройства, такие, как дисплей, обладают минимальным интеллектом, но, возможно, не все они программируемые. Мы полагаем, что каждый ответчик подсоединен к передатчику, который посылает сообщения на проходящий мимо него поезд; компьютер к ответчику местоположения не подсоединен. Все группы путевых устройств (каждое из которых логически состоит из интерфейса и переключателя) управляются компьютером, который может взаимодействовать с проходящим поездом или с наземным контроллером через их
Объектно-ориентированный анализ и проектирование |
395 |
передатчики и приемники. Каждый наземный контроллер присоединяется через глобальную сеть к диспетчерскому центру (который входит в систему управления операциями). Для обеспечения бесперебойного обслуживания мы решили разместить на каждом диспетчерском центре два компьютера: основной и резервный (второй включится в случае отказа основного компьютера). В свободное время резервный компьютер может использоваться для обслуживания других, низкоприоритетных пользователей.
На эксплуатационном уровне система управления движением может содержать сотни компьютеров: по одному на каждый поезд, по одному на каждый блок интерфейса путевых устройств и по два на каждый диспетчерский центр. На диаграмме процессов показаны только некоторые компьютеры, так как излишне показывать повторяющиеся компоненты конфигурации.
Как уже говорилось в главах 6 и 7, здравый смысл подсказывает, что при разработке большого проекта огромную роль играют разумность и ясность интерфейсов между ключевыми частями системы. Особенно это важно для интерфейса между программной и аппаратной частями системы. В начале работы над проектом интерфейс может быть определен не полностью, но он должен быть достаточно быстро формализован, чтобы различные части системы можно было разрабатывать, тестировать и интегрировать одновременно. Хорошо определенный интерфейс позволяет производить сборку системы без существенных переделок ее частей. Кроме того, мы не рассчитываем, что все разработчики, участвующие в проекте, будут одинаково сильны в программировании. Поэтому мы должны поручить спецификации ключевых абстракций и механизмов сильнейшим системным архитекторам
Ключевые абстракции и механизмы
В результате изучения требований к системе управления движением становится очевидно, что мы должны решить четыре основные подзадачи:
•сеть
•база данных
•интерфейс "человек/компьютер"
•управление аналоговыми устройствами в реальном времени.
Как мы пришли к выводу, что именно в этих подзадачах сконцентрирован основной риск разработки?
Систему связывает воедино распределенная сеть передачи данных. С помощью радио передаются сообщения: между ответчиками и поездами, между поездами и наземными контроллерами, между поездами и блоками интерфейсов путевых устройств, между наземными контроллерами и путевыми устройствами. Кроме того, сообщения должны передаваться между диспетчерскими центрами и отдельными наземными контроллерами. Надежная работа всей системы обеспечивается своевременным и надежным приемом и передачей сообщений.
Кроме того, система должна одновременно хранить информацию о местоположении и планируемых маршрутах множества поездов. Мы должны поддерживать постоянно обновляемую информацию и гарантировать ее целостность даже в случае попыток одновременно записать и считать информацию из разных мест сети. Следовательно, нам нужна распределенная база данных.
396 |
Объектно-ориентированный анализ и проектирование |
Проектирование человеко-машинного интерфейса ставит еще одну группу задач. Дело в том, что пользователями системы в основном являются машинисты и диспетчеры; но никто из них не обязан обладать профессиональными навыками работы с компьютером. Пользовательский интерфейс операционных систем, таких как UNIX или Windows, пригоден (по большей части) для специалиста-программиста, но считается слишком враждебным для конечных пользователей таких сред, как система управления движением. Следовательно, все формы взаимодействия должны быть спроектированы в расчете на эту особую группу пользователей.
Наконец, система управления движением должна взаимодействовать с разнообразными датчиками и исполнительными механизмами. Не останавливаясь здесь на природе этих устройств, отметим, что принципы управления ими не зависят от конкретного типа устройства и должны быть выбраны однотипными во всей системе.
Каждая из этих четырех подзадач включает целый ряд обособленных вопросов. Системные архитекторы должны найти ключевые абстракции и механизмы каждой задачи, и тогда мы сможем пригласить экспертов для решения каждой отдельной подзадачи независимо от других. Однако, ни анализ, ни проектирование не удастся завершить за один проход, - круг за кругом анализ будет обнаруживать новые архитектурные проблемы, решение которых потребует нового анализа. Таким образом, разработка будет неизбежно пошаговой и итеративной.
Из краткого проблемного анализа четырех главных подзадач мы видим, что существуют три высокоуровневые ключевые абстракции:
|
|
|
· Поезда |
|
Локомотивы и вагоны. |
|
|
|
· Пути |
|
Профиль пути, его качество и путевые устройства. |
|
|
|
· Планы |
|
Расписания, приказы, устранение накладок, назначение полномочии и |
|
|
подбор бригад. |
|
|
|
Каждый поезд характеризуется текущим положением на путях и может иметь только один активный план движения. Аналогично, в каждой точке пути может быть самое большое один поезд. Каждый план относится только к одному поезду, но ко многим точкам пути.
Мы можем выделить ключевой механизм для каждой из четырех (почти независимых) подзадач:
•передача сообщений
•планирование движения поездов
•отображение информации
•сбор данных от датчиков.
Эти четыре механизма составляют душу нашей системы. Они являются наиболее сложными и рискованными частями проекта. Важно, чтобы мы поручили лучшим системным архитекторам поэкспериментировать с различными подходами и постепенно создать среду, на базе которой более молодые разработчики сделают все остальное.
12.2. Проектирование
Объектно-ориентированный анализ и проектирование |
397 |
Как уже отмечалось в главе 6, создание архитектуры подразумевает выявление основной структуры классов и спецификацию общих взаимодействий, которые оживляют классы. Сконцентрировав внимание прежде всего на этих механизмах, мы с самого начала выявляем элементы наибольшего риска и нацеливаем на них все усилия системных архитекторов. Результаты этой фазы дают хорошую основу (в виде классов и взаимодействий), на базе которой строятся функциональные элементы нашей системы.
В данном разделе мы подробно рассмотрим семантику каждого из четырех выделенных ключевых механизмов.
Механизм передачи сообщений
Под сообщением здесь мы не имеем в виду активизацию методов, как это принято в объектно-ориентированных языках программирования. В данном случае понятие взято из словаря предметной области, из самого высокого уровня абстракции. Вот несколько примеров сообщений в системе управления движением: сигнал запуска путевому устройству, сообщение о прохождении поезда через определенный пункт пути, приказ диспетчера машинисту. Все эти виды сообщений могут передаваться внутри системы управления движением на двух уровнях:
•между компьютерами и устройствами
•между компьютерами.
Сейчас нас интересует второй уровень передачи сообщений. Так как система включает территориально распределенную сеть, мы должны учесть такие факторы, как помехи, отказы оборудования и секретность передачи информации.
Первый шаг при определении сообщений в системе - анализ взаимодействия каждой пары сообщающихся компьютеров (см. рис. 12-3). Для каждой такой пары мы должны задать три вопроса: (1) Какую информацию обрабатывает каждый компьютер? (2) Какая информация будет передаваться с одного компьютера на другой? (3) К какому уровню абстракции будет относиться эта информация? Эмпирического ответа на эти вопросы нет. Мы должны действовать итеративно, пока не придем к уверенности, что определены правильные сообщения и в системе связи нет "узких" мест (которые могут возникать из-за перегрузки линий связи или, например, из-за того, что сообщение разбивается на слишком мелкие пакеты).
Очень важно, чтобы на данном этапе проектирования внимание было сосредоточено на сути, а не на форме сообщений. Слишком часто системные архитекторы начинают проектирование с выбора битового представления сообщений. В реальной задаче преждевременный выбор низкоуровневого представления обязательно приведет к изменениям в дальнейшем и затронет всех, кто пользовался этим представлением. Кроме того, на ранней стадии проектирования у нас пока нет полной информации, как будут использоваться данные сообщения, и, следовательно, мы не можем судить, какое представление будет оптимальным по размеру и времени передачи.
Концентрируя внимание на сути сообщений, мы рассмотрим все классы сообщений. Другими словами, нужно определить назначение и смысл каждого сообщения, а также перечислить операции их обработки.
На диаграмме классов на рис. 12-4 показаны некоторые наиболее важные сообщения в системе управления движением. Заметим, что все сообщения в конечном счете являются

398 |
Объектно-ориентированный анализ и проектирование |
экземплярами абстрактного класса Message, который инкапсулирует поведение, общее для всех сообщений. Три класса следующего уровня представляют главные категории сообщений: сообщение о состоянии поезда, сообщение о плане движения поезда, сообщение путевого устройства. Каждый из этих трех классов будет детализирован в дальнейшем. В результате проектирования должны появиться десятки специализированных классов. Таким образом, существование обобщающих абстрактных классов чрезвычайно важно; без них мы получили бы сотни несвязанных между собой и, следовательно, сложных в использовании модулей, каждый из которых реализовывал бы специализированный класс, По мере проектирования мы будем выявлять другие важные группы сообщений и создавать для них специализированные промежуточные классы. К счастью, изменения в иерархии классов не должны волновать клиентов, использующих классы.
Рис. 12-4. Диаграмма классов сообщений.
Прежде всего нам следует стабилизировать интерфейсы ключевых классов сообщений. Начинать этот процесс лучше всего с основных классов иерархии. Начнем с введения двух следующих типов;
//номер, обозначающий уникальный идентификатор пакета typedef unsigned int PacketId;
//номер, обозначающий уникальный сетевой идентификатор typedet unsigned Int NodeId;
Теперь дадим определение абстрактного класса Message:
class Message { public:
Message(); Message(NodeId sender); Message(const Message&); virtual ~Message();
virtual Message& operator=(const Message&); virtual Boolean operator==(const Message&);

Объектно-ориентированный анализ и проектирование |
399 |
Boolean operator!=(const Message&); PacketId id() const;
Time timeStamp() const; NodeId sender() const;
virtual Boolean isIntact() const = 0;
};
Этот класс отвечает за установку уникального идентификатора сообщения, отметки времени, идентификатора отправителя, целостность сообщения (а именно, класс проверяет, является ли оно синтаксически и семантически законным сообщением системы). Последнее поведение показывает, что сообщение - это нечто большее, чем просто запись данных. Как обычно сообщения должны еще обеспечивать операции копирования, переименования и проверки на равенство.
Когда наш проект будет содержать интерфейсы всех наиболее важных сообщений. мы сможем написать программы, основанные на этих классах, для моделирования создания и приема потоков сообщений. Такие программы можно использовать для тестирования различных частей системы.
Диаграмма классов на рис. 12-4, бесспорно, неполна. На практике в первую очередь необходимо разрабатывать наиболее важные сообщения, а все остальные добавлять по мере того, как будут обнаруживаться менее общие формы взаимодействия. Использование объектно-ориентированного проектирования позволит нам последовательно добавлять эти сообщения без нарушения существующих частей системы, так как возможность изменений учтена с самого начала.
Рис. 12-5. Передача сообщений.
Если мы удовлетворены структурой классов, то можно начать проектирование самого механизма передачи сообщений. Здесь возникают две конкурирующих между собой цели: придумать механизм, который обеспечит надежную доставку сообщении, но сделает это на достаточно высоком уровне абстракции, так, чтобы клиенту не надо было заботиться о способе доставки сообщения. Такой механизм передачи сообщений позволит клиентам ограничиться упрощенным представлением о процессе передачи.
На рис. 12-5 показан результат проектирования механизма передачи сообщений. Как видно на диаграмме, чтобы послать сообщение, клиент сначала создает новое сообщение м, затем передает его диспетчеру своего узла, который ставит сообщение в очередь для последующей отправки. Заметьте, что наш проект предусматривает для клиента
400 |
Объектно-ориентированный анализ и проектирование |
возможность ожидания, если диспетчер узла не может осуществить отправку вовремя. Диспетчер получает сообщение как параметр и затем пользуется услугами объекта Transporter (передатчик), который обеспечивает необходимый формат сообщения и его рассылку по сети.
Мы сделали эту операцию асинхронной, чтобы клиент не ждал, пока сообщение будет отправлено по радио, что требует времени для кодирования, декодирования и повторных передач из-за помех. В конечном счете объект Listener (слушатель) принимает сообщение, преобразует его в принятую форму для диспетчера своего узла, который создает параллельное сообщение и ставит его в очередь. Получатель может заблокировать начало очереди сообщений, ожидая прихода следующего сообщения, которое передается как параметр синхронной операции nextMessage.
При проектировании диспетчера мы располагаем его на прикладном уровне сетевой модели ISO OSI [4]. Это позволит всем клиентам, передатчикам и приемникам работать на самом высоком уровне абстракции и общаться друг с другом в терминах, специфических для данного приложения.
Мы ожидаем, что окончательная реализация описанного механизма будет, вероятно, несколько более сложной. Например, может потребоваться шифровать и дешифровать сообщение и использовать коды обнаружения и исправления ошибок, чтобы обеспечить надежную связь в условиях помех на линиях связи и возможных отказов оборудования.
Планирование расписания поездов
Мы уже говорили, что концепция плана движения поезда является центральной для функционирования системы управления движением. Каждый поезд имеет один активный план, а каждый план предназначен только одному поезду. Он может содержать много различных приказов и точек на пути.
Наш первый шаг состоит в точном определении того, из каких частей состоит план поезда. Для этого мы должны перечислить всех потенциальных клиентов плана и выявить способ его использования каждым из них. Например, некоторым клиентам может быть разрешено составлять планы, другим - корректировать планы, а остальные смогут только читать планы. В этом смысле план выступает как хранилище информации, связанной с маршрутом одного отдельного поезда и действиями во время движения. Примером таких действий может быть отцепление или подцепление вагонов.
На рис. 12-6 приведены стратегические проектные решения, касающиеся структуры класса TrainPlan. Как и в главе 10, мы используем диаграмму классов, чтобы показать части, из которых состоит план движения поезда (подобно тому, как это делается на традиционных диаграммах "сущность-связь"). Мы видим, что каждый план содержит одну бригаду, но может включать в себя много приказов и действий. Мы ожидаем, что эти действия будут упорядочены во времени и что с каждым действием связана такая информация, как время, местоположение, скорость, ответственное лицо, приказы. Например, план может содержать следующие действия:
|
|
|
|
|
|
|
|
|
Время |
|
Положение |
|
Скорость |
|
Ответственное лицо |
|
Приказ |
|
|
|
|
|
|
|
||
0800 |
|
Pueblo |
|
Как указано |
|
Начальник депо |
|
Покинуть депо |
|
|
|
|
|
|
|
||
1100 |
|
Colorado Springs |
|
40 миль/ч |
|
|
|
Отцепить 30 вагонов |
|
|
|
|
|
|
|
|
|