- •Оптические волокна
- •Оптические волокна
- •Оптические волокна
- •Оптические волокна
- •Оптические волокна
- •Оптические волокна
- •Оптические волокна
- •Оптические волокна
- •Оптические волокна
- •Оптические волокна
- •Оптические волокна
- •Оптические волокна
- •Оптические волокна
- •Оптические волокна
- •Оптические волокна
- •Оптические волокна
- •Оптические волокна
- •Оптические волокна
- •Оптические волокна
- •Оптические волокна
- •Оптические волокна
- •Оптические волокна
- •Оптические волокна
- •Оптические волокна
- •Оптические волокна
- •Оптические волокна
- •Оптические волокна
- •Оптические волокна
- •Оптические волокна
- •Оптические волокна
- •Оптические волокна
Оптические волокна
Уравнения для продольных составляющих полей в цилиндрической системе координат
Будем искать решение в виде |
|
Ez AF r exp i exp i t z |
В сердцевине |
|
|
H z BF r exp i exp i t z |
|
Ez CF r exp i exp i t z |
В оболочке |
|
|
H z DF r exp i exp i t z |
|
Оптические волокна |
|
Ez 0 Ez 2 , exp i0 1 exp i 2 , Z множеству |
целых чисел |
Уравнение относительно радиальной функции – уравнение Бесселя
d |
2 |
F |
1 dF |
|
|
2 |
|
ãäå r |
|
|
1 |
2 |
F 0, |
||||||
d |
2 |
d |
|
|
|
|
|||
|
|
|
|
|
|||||
Различные пары линейно-независмых решений
J r - Функция |
Бесселя |
|
Неймана |
N r - Функция |
Конечна при любых вещественных значениях аргумента Бесконечна в нуле
H 1 r - Функция |
Ханкеля |
первого |
ðîäà |
|
|
r - Функция |
Ханкеля |
второго |
ðîäà |
H 2 |
||||
Бесконечны в нуле. При больших значениях аргумента пропорциональны
exp i r
Оптические волокна
Общее решение в сердцевине r<a
Ez AJ r exp i exp i t z
Hz BJ r exp i exp i t z
2 k 2 2 nco2 k0 2 nco2 k0 neff2 k0 nco2 neff2 k0
- вещественно |
nco2 neff2 |
Оптические волокна
Общее решение в оболочке r>a должно обращаться в ноль на бесконечности
Ez CH 1 r exp i exp i t z CH 1 i r exp i exp i t z H z DH 1 r exp i exp i t z DH 1 i r exp i exp i t z
- мнимое
2 2 k 2 2 ncl2 k0 2 ncl2 k0 neff2 k0 ncl2 neff2 k0 0
neff2 ncl2
Ограничение на эффективный показатель преломления
n2 |
n2 |
n2 |
; |
n n |
n |
co |
eff |
cl |
|
co eff |
cl |
|
|
Оптические волокна |
|
|
Граничные условия в r=a |
E I E II 0 |
Ez r a 0 Ez r a 0 |
|
|
||
|
|
E r a 0 E r a 0 |
H I H II |
|
Hz r a 0 H z r a 0 |
|
||
|
|
H r a 0 H r a 0 |
Оптические волокна
Дисперсионное уравнение относительно
Здесь |
1 co , |
2 cl |
2 k 2 2 nco2 |
neff2 |
k0 |
2 2 k 2 neff2 |
ncl2 k0 |
Решением являются величины
Оптические волокна
Оптические волокна
Оптические волокна
Соотношения между коэффициентами
Последний неизвестный коэффициент определяется из заданной мощности светового поля в волокне
Структура электромагнитного поля моды
E r, , z Ez r, zo E r, φo Er r, ro exp i t z H r, , z H z r, zo H r, φo Hr r, ro exp i t z
Соотношение ортогональности
E H z dxdy P
Здесь модовый |
мультиинде кс , |
Оптические волокна
Торцевое возбуждение волокон
