
- •А.В. Шарапов
- •Содержание
- •Введение
- •1 Основные характеристики усилительных устройств
- •1.1 Структурная схема усилительного устройства
- •1.2 Классификация электронных усилителей
- •1.3 Усилительные параметры
- •1.4 Амплитудно-частотная и фазочастотная характеристики
- •1.5 Переходная характеристика
- •1.6 Линейные и нелинейные искажения
- •1.7 Амплитудная характеристика, динамический диапазон
- •1.8 Способы связи между каскадами
- •1.9 Классы усиления
- •2 Обратные связи в усилителях
- •2.1 Виды обратных связей
- •2.2 Влияние оос на стабильность коэффициента усиления
- •2.3 Влияние оос на нелинейные искажения
- •2.4 Влияние оос на величину входного и выходного сопротивлений усилителя
- •2.5 Амплитудно-частотная характеристика усилителя с ос
- •2.6 Частотный критерий устойчивости усилителя с обратной связью. Запасы устойчивости по амплитуде и по фазе
- •2.7 Пример расчета характеристик усилителя с оос
- •3 Эквивалентные схемы и малосигнальные параметры усилительных приборов
- •3.1 Способы включения биполярного транзистора
- •3.2 Характеристики транзистора при включении с общей базой
- •3.3 Характеристики транзистора при включении с общим эмиттером
- •3.7 Определение h-параметров по характеристикам транзистора
- •3 .8 Типы полевых транзисторов
- •3.9 Характеристики и малосигнальные параметры полевых транзисторов
- •3 .10 Эквивалентные схемы замещения полевых транзисторов
- •4 Усилительный каскад с общим эмиттером
- •4 .1 Принцип работы и назначение элементов простейшего каскада унч по схеме с общим эмиттером
- •4.2 Нагрузочные прямые постоянного и переменного тока
- •4.3 Анализ каскада в области средних частот
- •4.4 Анализ каскада в области нижних частот
- •4.5 Анализ каскада в области верхних частот
- •4.6 Результирующие характеристики каскада
- •5 Температурная стабилизация режима работы биполярного транзистора
- •5.1 Цепи смещения с фиксированным током базы и фиксированным током эмиттера
- •5.2 Цепь смещения с эмиттерной стабилизацией рабочей точки транзистора
- •5.3 Цепь смещения с комбинированной отрицательной обратной связью по постоянному току
- •6 Каскад с общим эмиттером при работе в режиме большого сигнала
- •6.1 Выбор режима работы транзистора
- •2. Расчет элементов цепи смещения
- •3. Основные показатели усилителя в области
- •4. Расчет величин емкостей конденсаторов
- •5. Оценка полосы пропускания в области верхних
- •7 Широкополосные усилители
- •7.1 Особенности формирования ачх широкополосных усилителей
- •7.2 Схемы высокочастотной коррекции
- •7.3 Схема низкочастотной коррекции
- •8 Усилительные каскады по схемам с общей базой и общим коллектором
- •8.1 Каскад с общей базой
- •8.2 Каскад с общим коллектором
- •8.3 Унч с гальванически связанными каскадами оэ-ок
- •9 Усилительные каскады на полевых транзисторах
- •9.1 Каскад по схеме с общим истоком
- •9.2 Анализ каскада в области средних и верхних частот
- •10 Усилители мощности
- •10.1 Трансформаторный выходной каскад в режиме класса а
- •10.2 Трансформаторный выходной каскад в режимах в и ав
- •10.3 Влияние трансформатора на частотную характеристику усилителя
- •10.4 Бестрансформаторные выходные каскады
- •10.4.1 Выходные каскады в режиме класса в
- •10.4.2 Выходной каскад в режиме класса ав
- •10.4.3 Каскад с вольтодобавкой
- •10.4.4 Выходной каскад унч с квазидополнительной симметрией
- •11 Операционные усилители
- •11.1 Дифференциальный усилительный каскад
- •11.2 Стабилизаторы тока
- •11.3 Операционный усилитель
- •11.4 Основные параметры и типовые схемы включения операционных усилителей
- •12 Примеры применения операционных усилителей
- •12.1 Инвертирующий усилитель постоянного тока
- •12.2 Неинвертирующий усилитель постоянного тока
- •12.3 Дифференциальный упт
- •12.4 Аналоговый сумматор
- •12.5 Аналоговый интегратор
- •12.6 Усилители переменного напряжения
- •12.7 Усилители с токовым выходом
- •12.8 Усилители тока
- •12.9 Амплитудный детектор
- •12.10 Выпрямитель среднего значения
- •12.11 Преобразователи сопротивления в напряжение
- •12.12 Пример расчета погрешностей измерительного упт
- •13 Избирательные усилители
- •13.1 Резонансный усилитель с параллельным lc-контуром
- •13.2 Каскодный усилитель
- •13.3 Избирательный усилитель типа rc со сложной оос
- •13.4 Активные фильтры нижних и верхних частот
- •14 Генераторы гармонических колебаний
- •14.1 Структурная схема генератора. Условия баланса фаз и амплитуд
- •14.2 Автогенератор с трансформаторной обратной связью
- •14.3 Трехточечные генераторы
- •14.4 Кварцевая стабилизация частоты
- •14.5 Автогенератор с трехзвенной rc-цепью
- •14.6 Автогенератор с мостом Вина
- •14.7 Генератор с независимым возбуждением
- •14.8 Автогенератор на туннельном диоде
- •15 Стабилизаторы постоянного напряжения
- •15.1 Классификация стабилизаторов постоянного напряжения
- •15.2 Параметрический стабилизатор напряжения на кремниевом стабилитроне
- •15.3 Источник опорного напряжения
- •15.4 Компенсационный стабилизатор напряжения
- •15.5 Стабилизатор на операционном усилителе с ограничением выходного тока
- •15.6 Микросхемы стабилизаторов постоянного напряжения
- •Приложение а
- •Литература
- •Список условных обозначений
12.6 Усилители переменного напряжения
В
усилителях переменного напряжения на
ОУ возможно применение разделительных
конденсаторов. В инвертирующем УНЧ на
операционном усилителе (рис. 12.10, а)
по постоянному току ОУ охвачен
стопроцентной ООС и сдвиг выходного
напряжения невелик:
.
Вследствие этого отпадает необходимость
балансировки нуля и возможно подключение
нагрузки без разделительного конденсатора.
Коэффициент передачи УНЧ для идеального
операционного усилителя
,
где
.
ЛАЧХ
коэффициента усиления приведена на
рис. 12.10, б.
Пунктиром изображена ЛАЧХ ОУ. Полоса
пропускания УНЧ на уровне 3 дБ идет от
до
.
В неинвертирующем УНЧ (рис. 12.11, а) наряду с разделительным конденсатором С2 включен конденсатор С1 для уменьшения сдвига и дрейфа нуля на выходе ОУ (в этом случае обратная связь на постоянном токе стопроцентная и значительно глубже, чем на переменном).
При R2=R3 сдвиг нуля определяется как
.
Коэффициент
усиления по напряжению в рабочем
диапазоне частот равен
.
Входное сопротивление
.
Бόльшую
величину входного сопротивления
обеспечивает схема, представленная на
рис. 12.11, б.
Резистор R3
по переменной составляющей включен
между входами ОУ, напряжение между
которыми близко к нулю. Поэтому входной
ток почти не течет в R3.
В этой схеме
.
12.7 Усилители с токовым выходом
При измерении постоянных напряжений с помощью токового прибора (миллиамперметра) возникают погрешности за счет влияния измерительной цепи на измеряемую, изменения сопротивления медной рамки прибора при изменении температуры окружающей среды. В вольтметрах переменного напряжения к ним добавляются погрешности за счет падения напряжения на диодах выпрямителя.
Применение
операционных усилителей (рис. 12.12)
позволяет существенно уменьшить
перечисленные погрешности и построить
милли-вольтметры постоянного и переменного
напряжения. Применение неинвертирующего
включения ОУ обеспечивает большое
входное сопротивление измерительной
цепи. Поэтому при ее подключении величина
Uвх
не изменяется. Так как разность потенциалов
между входами ОУ практически равна
нулю, ток через калибровочный резистор
R
определяется соотношением I
= Uвх/R.
Такой же ток течет через стрелочный
прибор (миллиамперметр), подключенный
в цепь ООС операционного усилителя.
Величина этого тока не зависит от
сопротивления рамки токового прибора
и других сопротивлений, последовательно
с ней включенных (в частности, диодов
выпрямительной схемы). С помощью
резистораR
легко изменять шкалу прибора.
В схеме вольтметра переменного напряжения в момент перехода измеряемого напряжения через ноль цепь обратной связи ОУ разомкнута. Поэтому напряжение на выходе ОУ быстро достигает порога отпирания диодов. Следовательно, ошибка за счет напряжения отпирания диодов уменьшается в К раз.
Схема
дифференциального усилителя с токовым
выходом приведена на рис. 12.13. Наряду с
ООС в ней используется ПОС с выхода ОУ
на неинвертирующий вход.
Напряжение на выходе операционного усилителя
Подставив это выражение в уравнение тока нагрузки iн = i2+ i1, получаем
т.е. ток iн не зависит от сопротивления нагрузки и пропорционален разности входных напряжений. Устройство выполняет функцию стабилизатора тока.