Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Архив ZIP - WinRAR_1 / 21) Сохранение заряда уравнение непрерывности

.docx
Скачиваний:
43
Добавлен:
11.05.2015
Размер:
834.49 Кб
Скачать

Рассмотрим среду, в которой течет ток, и выделим в ней замкнутую поверхность S (рис. 4.1). Для тока, выходящего в единицу времени из объема V, ограниченного поверхностью S, имеем

В силу закона сохранения заряда эта величина должна быть равна скорости убывания заряда, содержащегося в данном объеме

. Это соотношение называют уравнением непрерывности. Учитывая, что заряд

,

получим . Преобразовав левую часть равенства по теореме о дивергенции (теореме Гаусса - Остроградского), находим

.

Таким образом в каждой точке пространства выполняется условие

,

которое является дифференциальной формой уравнения непрерывности. Если токи постоянны, то все электрические величины не зависят от времени и в уравнении непрерывности нужно положить равным нулю. Тогда , следовательно, в случае постоянного тока вектор j не имеет источников. Это означает, что линии тока нигде не начинаются и нигде не заканчиваются, т. е. они замкнуты.