ИДЗ_1 / VAR-20
.PDF
zadanie N 14 |
wARIANT 20 |
dIFFERENCIALXNYE URAWNENIQ I SISTEMY
1. nAJTI OB]IE RE[ENIQ URAWNENIJ PERWOGO PORQDKA
|
|
|
1) |
y xy;1 dx + xy ln x dy = 0: |
|
|||
|
|
|
2) |
(y2 + x y2) y0 + x2 ; y x2 = 0: |
|
|||
|
|
|
3) |
x dy ; y ; x tg xy ! dx = 0: |
|
|||
|
|
|
|
|
|
|
3 |
|
|
|
|
4) |
3x y0 ; 2y = yx2 : |
|
|||
|
|
|
5) |
2(cos2 y cos 2y ;2 x) y0 = sin 2y: |
|
|||
|
|
|
6) |
y0 ; 2x y = 2x ex : |
|
|||
2. nAJTI ^ASTNYE RE[ENIQ URAWNENIJ |
|
|||||||
1) |
(x y0 |
; |
1) ln x = 2y |
y(e) = 0: |
||||
2) |
|
|
|
|
3 |
x dy = 0 |
y(0) = 0: |
|
x sin x dx |
cos |
|||||||
3) |
xy0 ; y = |
; |
2 |
(ln x + 2) ln x |
y(1) = 1: |
|||
;y |
|
|||||||
4) |
x + ex=y dx + ex=y 1 ; yx! dy = 0 |
y(0) = 2: |
||||||
3. nAJTI RE[ENIQ URAWNENIJ WYS[EGO PORQDKA
1) x y00 = y0 (ln y0 ; ln x):
3) y y00 ; (y0)2 = y2 y0:
5) y00 + 4y0 + 4y = e;2x ln x:
7) y00 + 2y0 + y = (18x + 8) e;x: 9) y(4) ; 6y000 + 9y00 = 3x ; 1
11)(4x + 3)2 y00 + (4x + 3) y0 ; 16y = 0
13)x ; 2x + 10x = 18 cos 5t + 60 sin 5t
14)x ; 6x + 34x = t2 ; 8t ; 6
4.nAJTI RE[ENIQ LINEJNYH SISTEM
2) x y00 = y0 + y02 |
y(1) = 1 |
: |
|||
|
|
|
y0(1) = 2 |
|
|
4) y00 = x 3;4x: |
|
|
|
||
6) y00 |
+ 25y = |
1 |
|
: |
|
sin 5x |
|
||||
|
|
|
|
||
8) y00 |
+ y = ex sin x: |
|
|
||
10) y000 ; 5y00 + 3y0 + 9y = (32x ; 32) e;x:
12) x2 y00 ; 3x y0 + 3y = ; ln x:
x(0) |
= 2 |
x(0) = 0: |
x(0) |
= ;4 |
x(0) = 1: |
1) |
8 x = 7x |
; 3y |
: |
2) |
8 x = 4x + 2y |
|
x(0) = 5 |
|
|
< y = 3x |
+ y |
|
|
< y = x + 3y |
|
|
y(0) = 0: |
|
: |
|
|
|
: |
|
|
|
3) |
8 x = x + 3y |
|
: 4) |
8 x = 4x ; 3y + sin t : |
||||
|
< y = ;3x + 7y |
|
< y = 2x ; y |
; 2 cos t |
||||
|
: |
|
|
|
: |
|
|
|
|
|
|
|
|
23 |
|
|
|
zadanie N 15 |
wARIANT 20 |
~ISLOWYE I FUNKCIONALXNYE RQDY.
1. nAJTI SUMMY ^ISLOWYH RQDOW
|
1 (;1)n+1 |
|
|
3 |
|
n;1 |
|
|
1 |
1 |
|
|
|
|
3) 1 |
|
|
|
4 |
|
|
|
|
||||||
1) |
|
|
|
! |
|
|
2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
5 |
|
|
X |
n2 + n |
; |
2 |
|
|
n(n |
; |
1)(n |
; |
2) |
||||||||||||||
|
X |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X |
|
|
|
|
|
|||||||
|
n=1 |
|
|
|
|
|
|
|
|
|
n=1 |
|
|
|
|
|
|
|
n=3 |
|
|
|
|
|
|
|
|||
2. iSSLEDOWATX RQDY NA SHODIMOSTX |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
1 (n!)3 |
|
|
|
|
|
|
|
( 1)n p |
|
|
|
|
|
|
|
||||||||||||
|
1) |
|
|
|
|
2) |
|
1 |
5n2 + 3n ; 1 |
|
|
||||||||||||||||||
|
|
X |
n |
|
2 |
|
|
|
|
|
|
X |
; |
|
|
|
|
|
7n2 + 4 |
|
|
|
|
|
|||||
|
|
n=1 |
2n |
|
|
|
|
|
|
|
n=2 |
|
|
|
|
|
|
|
|
|
|
||||||||
|
3) |
1 6 (n ; 1) |
|
|
|
4) |
|
1 |
( 1)n 3n ; 2 |
|
|
|
|
|
|
||||||||||||||
|
|
X |
|
|
|
n! |
|
|
|
|
|
|
X |
; |
|
|
|
2n |
|
|
|
|
|
|
|
||||
|
|
n=1 |
|
|
|
|
|
|
|
|
n=1 |
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
1 |
|
2n |
|
|
3 |
|
|
|
|
|
1 |
|
|
n |
|
|
|
|
1 |
|
|
|
|
|
|
||
|
|
X |
|
|
|
|
|
|
|
|
|
|
|
X |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5) |
|
|
|
|
p2n + 7 |
|
|
6) |
|
|
|
|
n (2 + 5 ln n)3 |
|
|
|||||||||||||
|
n=1 tg |
|
|
|
|
|
n=1(;1) |
|
|
|
|||||||||||||||||||
|
|
|
n |
|
1 |
n |
1 |
|
|
|
|
|
|
|
|
|
2=n |
|
|
|
|
|
|
|
|||||
|
|
1 |
|
|
|
|
|
|
1 |
|
|
|
3 q |
|
|
|
|
|
|
|
|
||||||||
|
7) |
|
|
;n |
! |
|
|
|
8) |
|
(;1)n |
|
|
|
|
|
|
|
|
|
|||||||||
|
X |
|
|
5n |
|
|
|
X |
n2 |
|
|
|
|
|
|
|
|
||||||||||||
|
|
n=1 |
|
|
|
|
|
|
|
|
|
|
n=1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
3. nAJTI INTERWALY SHODIMOSTI FUNKCIONALXNYH RQDOW
|
|
3 |
|
|
1) |
1 |
pn + 2 |
(x ; 8)n |
|
X |
n + 1 |
|||
|
n=1 |
|
|
|
3) |
1 |
(x2 ; 6x + 12)n |
||
|
X |
|
4n (n2 + 1) |
|
|
n=1 |
|||
|
|
|
||
2) |
1 (;1)nn 22n xn |
|
n=1 |
|
X |
1 n!
4) X xn
n=1
4. nAJTI SUMMY FUNKCIONALXNYH RQDOW
|
1) |
1 |
01 + |
(;1)nn+1 1 xn;1 |
2) |
|
1 (2n2 ; 2n + 1)xn |
|||||
|
|
X |
@ |
|
|
|
A |
|
X |
|
||
|
|
n=1 |
|
|
|
|
|
|
n=0 |
|
||
5. |
rAZLOVITX W RQD tEJLORA PO STEPENQM |
(x ; x0) |
FUNKCII |
|||||||||
|
1) y = |
|
|
1 |
|
x0 = ;2 |
2) y = (1 + x) e;2x x0 = 0 |
|||||
|
|
|||||||||||
|
x2 + 4x + 7 |
|||||||||||
|
3) y = |
arctgx3 |
4) y = ln(x + 2)3 |
x0 = 1: |
||||||||
|
|
5x3 |
|
|
x0 = 0 |
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
6. |
wY^ISLITX INTEGRALY S TO^NOSTX@ DO 0,001 |
|
||||||||||
|
|
|
|
1=8 |
p |
|
|
|
2) Z1 sin x3 dx |
|||
|
|
|
1) Z |
|
dx |
|
||||||
|
|
|
1 ; x3 |
|
||||||||
|
|
|
|
0 |
|
|
|
|
|
|
0 |
|
24
zadanie N 16 |
wARIANT 20 |
rQDY fURXE. iNTEGRAL fURXE
1. zADANNU@ NA INTERWALE (;l l) FUNKCI@ RAZLOVITX W TRIGONOMET- RI^ESKIJ RQD fURXE. pOSTROITX GRAFIK SUMMY POLU^ENNOGO RQDA.
1) f(x) = 1 ; x=2 x 2 (;pi )
2) f(x) = cos 2x |
x 2 (;1 1) |
|||||||||
3) f(x) = 8 |
0 |
|
; < x |
|
0 |
|||||
|
|
< x ; 2 =2 |
x < |
|||||||
2. fUNKCI@ f(x) = 8 |
;x |
: |
0 < x < 1 |
|
RAZLOVITX W RQD fURXE PO |
|||||
|
|
|||||||||
< |
2 ; x |
|
1 x < 4 |
|
|
|
||||
: |
|
|
|
|
(sin |
n x |
|
n = 1 2 :::1). pOSTRO- |
||
ORTOGONALXNOJ SISTEME FUNKCIJ |
|
4 |
|
|||||||
ITX GRAFIK SUMMY POLU^ENNOGO RQDA. |
|
|
|
|
||||||
3. fUNKCI@ f(x) = 8 |
0 |
|
0 < x < 1 |
|
RAZLOVITX W RQD fURXE |
|||||
< |
3 ; 4x 1 |
x < 2 |
|
|
|
|||||
: |
|
(cos |
n x |
|
n = 0 1 2 :::1). pOSTROITX |
|||||
PO ORTOGONALXNOJ SISTEME |
|
2 |
||||||||
GRAFIK SUMMY POLU^ENNOGO RQDA. |
|
|
|
|
|
|
||||
4. fUNKCI@ f(x) = 2jxj |
;2 < x < 2 |
|
PREDSTAWITX TRIGONOMET- |
|||||||
RI^ESKIM RQDOM fURXE W KOMPLEKSNOJ FORME. zAPISATX:
a)SPEKTRALXNU@ FUNKCI@ S(!n),
b)AMPLITUDNYJ SPEKTR A(!n) = jS(!n)j
c)FAZOWYJ SPEKTR '(!n) = arg S(!n).
|
8 |
1 |
0 x < 1 |
|
||
5. fUNKCI@ f(x) = > |
2 ; x 1 |
x < 2 |
PREDSTAWITX INTEGRALOM |
|||
|
< |
0 |
x < 0 x > 2 |
|
||
fURXE. |
> |
|
|
|
|
|
|
|
|
|
|
|
|
|
: |
|
|
|
|
|
6. nAJTI PREOBRAZOWANIE fURXE |
F(!) FUNKCII |
|||||
|
|
f(x) = 8 x |
jxj 2 |
|||
|
|
|
< |
0 |
jxj > 2 |
|
7. nAJTI KOSINUS PREOBRAZOWANIE: fURXE |
Fc(!) FUNKCII |
|||||
|
f(x) = 8 cos x |
0 < x |
=2 |
|||
|
|
|
< 0 |
x > =2 |
|
|
|
|
|
: |
25 |
|
|
zadanie N 17 |
wARIANT 20 |
kOMPLEKSNYE ^ISLA I FUNKCII
1. |
dANY ^ISLA |
z1 = ;5 + 3i z2 = 6 + i: |
|
|
wY^ISLITX |
: |
||||||||||
|
|
|
|
|
|
|
|
|
1 ; z2 |
|
|
z1 z2 |
|
|
||
1) |
2z1 |
; |
3z2 |
2) (z2)2 |
3) |
|
z |
4) |
|
|||||||
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
z2 |
|
|
z1 + z2 |
|
||||
5) |
q |
|
6) |
ln z1 |
7) |
cos z2 |
8) |
sh z1: |
|
|||||||
z1z22 |
|
|||||||||||||||
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rEZULXTATY WY^ISLENIJ PREDSTAWITX W POKAZATELXNOJ I ALGEBRAI- ^ESKOJ FORMAH.
2. oPREDELITX I POSTROITX NA KOMPLEKSNOJ PLOSKOSTI SEMEJSTWA LINIJ, ZADANNYH URAWNENIQMI
1) z |
|
= C sin(2arg z) |
2) Re |
1 |
! = C: |
|
z |
||||||
z ; 2i |
||||||
3. rE[ITX URAWNENIQ |
|
|
||||
|
|
|
||||
1) sin z + sin 3z = 0 |
2) z2 + 4iz + 2 = 0: |
|||||
4.nA KOMPLEKSNOJ PLOSKOSTI ZA[TRIHOWATX OBLASTI, W KOTORYH PRI OTOBRAVENII FUNKCIEJ f(z) = 3z2 + (2 ; i) z + 4 ; 3i IMEET MESTO
a)SVATIE k 1
b)POWOROT NA UGOL 0 90o.
5.dOKAZATX, ^TO FUNKCIQ v(x y) = 2y ; e;y sin x MOVET SLUVITX MNIMOJ ^ASTX@ ANALITI^ESKOJ FUNKCII f(z) = u + iv I NAJTI EE.
6.wY^ISLITX INTEGRALY
1) |
Z |
ln z |
dz |
GDE L : f jzj = 2 0 < arg z < =2 g |
z |
||||
|
(L) |
|
|
|
2) |
Z |
z jzj2 dz |
GDE L ; LOMANAQ (0 1 1 + i): |
|
|
(L) |
|
|
|
7. wY^ISLITX, ISPOLXZUQ INTEGRALXNU@ FORMULU kO[I
I |
ez |
; |
1 |
dz |
GDE |
L : |
z(z |
2i) |
|||||
|
|
; |
|
|
|
|
(L) |
|
|
|
|
|
|
|
|
|
|
|
26 |
|
8 1) |
jzj = 1 5 |
|
< |
|
jz ; 2ij = 1 |
> |
2) |
|
> |
3) |
jzj = 3: |
: |
|
|
zadanie N 18 |
wARIANT 20 |
wY^ETY I IH PRILOVENIQ
1. iSSLEDOWATX NA ABSOL@TNU@ I USLOWNU@ SHODIMOSTX RQD
X |
|
1 |
|
|
1 |
p |
|
sin n1 : |
|
n=1 |
n + i |
|||
2. nAJTI I POSTROITX OBLASTX SHODIMOSTI RQDA
1 zn |
+ |
1 |
(;1)m |
: |
|
X |
|
|
|||
n2n |
|
X |
|
||
n=0 |
|
|
n=1 |
|
|
3. nAJTI WSE LORANOWSKIE RAZLOVENIQ DANNOJ FUNKCII PO STEPENQM z ; z0
A) |
7z ; 196 |
z0 = 0 |
B) cos |
z2 ; 4z |
z0 = 2: |
|
98z2 + 7z3 ; z4 |
(z ; 2)2 |
|||||
|
|
|
|
4.dLQ FUNKCII ctg(1=z) NAJTI IZOLIROWANNYE OSOBYE TO^KI I OPREDELITX IH TIP.
5.dLQ DANNYH FUNKCIJ NAJTI WY^ETY W UKAZANNYH OSOBYH TO^KAH
A) |
|
sin 2z ; 2z |
|
z = 0 |
|||
|
|
sh 3z ; 3z |
|
|
|
|
|
W) |
|
1 |
ln(1 + z) |
z = 0 |
|||
|
z3 |
||||||
|
|
|
2z + 16 |
|
|
1 + z |
|
D) |
|
|
ln ( |
|
), |
||
|
8z2 + 2z ; 1 |
2z + i |
|||||
|
z = 1 |
|
|
|
|
||
6. wY^ISLITX INTEGRALY
A) |
Z |
cos zz23 ; 1dz |
|||||
|
jzj=1 |
|
|
|
|
||
|
1 |
|
|
1 |
|
|
|
W) |
Z |
|
dx |
||||
x4 + 1 |
|||||||
|
;1 |
|
|
|
|
|
|
D) Z2 |
3 |
; |
p15 |
sin t |
dt |
||
|
0 |
|
|
|
|
|
|
B)
G)
E)
B) |
|
|
|
cos z |
|
|
|
|
|
z = 0 |
|||
|
|
|
|
|
|
|
|
||||||
(z ; 2i)(z + i)2 |
|
||||||||||||
G) |
|
|
|
|
sin 4z ; 4z |
|
|
|
z = 0 |
||||
|
|
exp(z2) ; 1 |
; z2 |
|
|
||||||||
E) (z ; 2i) ln(1 |
; =2), |
||||||||||||
|
z = 1. |
|
|
|
|
|
|
||||||
|
Z |
|
cos 3z ; 1 + 9z2=2dz |
||||||||||
|
|
|
z4 sh(9z=4) |
|
|
||||||||
jzj=1 |
|
|
|
|
|
|
|
|
|
|
|||
|
1 |
|
|
x2 cos x |
|
|
|
|
|
|
|||
Z |
|
|
|
|
dz |
|
|||||||
x4 + 10x2 + 9 |
|
||||||||||||
;1 |
|
|
|
|
|
|
|
|
|
|
|
||
Z2 |
p |
|
+1cos t |
dt. |
|
|
|
|
|||||
7 |
|
|
|
|
|||||||||
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
27
zadanie 19 |
wARIANT 20 |
oPERACIONNYJ METOD
1. nAJTI IZOBRAVENIQ SLEDU@]IH FUNKCIJ |
|
|
|
|
|
|
|||||||||||||||||||
|
|
|
|
sin 7t sin 3t |
|
|
|
|
|
|
d |
|
t |
|
|
|
|
|
|
||||||
|
1) |
f(t) = |
|
|
|
t |
|
: |
3) |
f(t) = |
dt |
[e cos(!t + =4)]: |
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
0 |
|
|
t |
< |
0 |
|||
|
2) |
f(t) = t2 ch2t: |
|
|
4) |
|
< |
1 |
|
|
0 |
< |
t < 1 |
||||||||||||
|
|
|
|
2 |
; |
t |
1 < t < 2 |
||||||||||||||||||
|
|
|
f(t) = > |
|
|
||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
> 0 |
|
|
t |
> |
2: |
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: |
|
|
|
|
|
|
|
|
|
2. nAJTI ORIGINALY FUNKCIJ PO ZADANNYM IZOBRAVENIQM |
|||||||||||||||||||||||||
|
|
1) F(p) = |
|
|
p |
|
|
|
|
|
|
|
|
|
|
p2 e;4p |
|||||||||
|
|
|
: |
|
|
2) F(p) = |
|
: |
|||||||||||||||||
|
|
(p2 + 4)2 |
|
|
(p3 ; 1) |
||||||||||||||||||||
3. |
nAJTI RE[ENIE ZADA^I kO[I OPERACIONNYM METODOM |
||||||||||||||||||||||||
|
|
1) |
7x + x = e;t + 2t |
|
|
|
x(0) = 0: |
|
|
|
|
|
|||||||||||||
|
|
2) |
x + x = 5 sin t |
|
|
|
|
x(0) = 0 |
|
x(0) = 0: |
|||||||||||||||
|
|
3) |
x + 4x = t e4t |
|
|
|
|
x(0) = ;3 |
x(0) = 0: |
||||||||||||||||
|
|
4) |
4x + x = t2 + 3 |
|
|
|
|
x(0) = 0 |
|
x(0) = 0: |
|||||||||||||||
4. |
rE[ITX URAWNENIQ, |
ISPOLXZUQ FORMULU d@AMELQ |
|
|
|
||||||||||||||||||||
|
1) |
x ; 9x = |
|
1 |
|
|
|
x(0) = 0 x(0) = 0: |
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
||||||||||||||||||
|
ch33t |
|
|
|
|
|
|
||||||||||||||||||
|
|
|
|
|
8 |
0 |
|
|
|
t |
< |
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
2) |
x + 4x = |
< |
;3 |
0 |
t |
< 2 |
|
|
x(0) = 0 |
|
x(0) = 0: |
|||||||||||||
|
|
|
|
|
|
|
|
|
2 |
|
t |
|
3 |
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
> 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
> 0 |
|
|
|
t |
> |
|
3 |
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5. nAJTI RE[ENIE SISTEM OPERACIONNYM METODOM |
|
|
|
||||||||||||||||||||||
1) |
8 x = 3x + y |
|
|
x(0) = |
;1 |
|
2) 8 x = |
;3x ; y |
|
x(0) = 0 |
|||||||||||||||
|
< y = 2x |
+ 4y |
y(0) = 0: |
|
|
|
< y = 5x + y |
|
|
y(0) = ;1: |
|||||||||||||||
|
: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: |
|
|
|
|
|
|
|
|
|
28
zadanie 20 |
tEORIQ WEROQTNOSTEJ |
wARIANT 20 |
1. kAKOWA WEROQTNOSTX TOGO, ^TO NAUGAD WYBRANNOE TREHZNA^NOE ^ISLO DELITSQ NA 4 ?
2. wEROQTNOSTX POQWLENIQ SOBYTIQ W KAVDOM IZ 1500 NEZAWISIMYH ISPYTANIJ RAWNA 0.6. nAJTI WEROQTNOSTX TOGO, ^TO SOBYTIE POQWITSQ a) NE MENEE 800 I NE BOLEE 1100 RAZ b) NE MENEE 1200 RAZ.
3. hARAKTERISITIKA MATERIALA, WZQTOGO DLQ IZGOTOWLENIQ PRODUK- CII, MOVET NAHODITXSQ W [ESTI RAZLI^NYH INTERWALAH S WEROQTNOS- TQMI SOOTWETSTWENNO 0.09, 0.16, 0.25, 0.25, 0.16 I 0.09. w ZAWISIMOSTI OT SWOJSTW MATERIALA WEROQTNOSTI POLU^ENIQ PERWOSORTNOJ PRODUK- CII RAWNY SOOTWETSTWENNO 0.2, 0.3, 0.4, 0.4, 0.3 I 0.2. nAJTI WEROQT- NOSTX TOGO, ^TO IZGOTOWLENNAQ PERWOSORTNAQ PRODUKCIQ IMELA HARAK- TERISTIKI PQTOGO TIPA.
4.rABO^IJ ZA 8-MI ^ASOWOJ RABO^IJ DENX PROIZWODIT W SREDNEM 1000 DETALEJ. nAJTI WEROQTNOSTX TOGO, ^TO ZA ODNU SLU^AJNO WYBRANNU@ MINUTU ON PROIZWEL ROWNO TRI DETALI.
5.sLU^AJNAQ WELI^INA R - RASSTOQNIE OT TO^KI POPADANIQ DO CENT- RA MI[ENI - RASPREDELENA PO ZAKONU rELEQ
f(r) = 8 0 |
|
a r2 |
|
r < 0 |
|
> |
e; 2 |
|
|
|
|
< |
|
r > 0 |
|
||
> a r |
|
|
|
||
GDE PARAMETR HARAKTERIZU@]IJ METKOSTX STRELKA
"a"; , : .
kAKOWA WEROQTNOSTX POPASTX W "QBLO^KO" NE MENEE TREH RAZ PRI PQTI WYSTRELAH, ESLI DIAMETR "QBLO^KA" 10 SM, A PARAMETR
"a" = 0 4:
6. zADANA PLOTNOSTX RASPREDELENIQ NEPRERYWNOJ SLU^AJNOJ
<a(x3 + 3x) 0 x 1
1)NAJTI ZNA^ENIE PARAM: ETRA "a"
2)NAJTI FUNKCI@ RASPREDELENIQ F (x)
3)POSTROITX GRAFIKI FUNKCIJ F(x) I f(x)
4)WY^ISLITX MATEMATI^ESKOE OVIDANIE M(X) I DISPERSI@ D(X)08 x > 1WELI^INY x < 0
5) WY^ISLITX WEROQTNOSTX P (0 5 < X < 0 8):
29
zadanie 21 |
wARIANT 20 |
mATEMATI^ESKAQ STATISTIKA
1. pROWODILSQ PODS^ET KOLI^ESTWA PROEZVA@]IH MIMO POSTA gai W TE^ENII 1-OJ SLU^AJNO WYBRANNOJ MINUTY (SLU^AJNAQ WELI^INA X). tAKIH NABL@DENIJ PROWEDENO 30, REZULXTATY NABL@DENIJ PRIWEDE- NY W TABLICE. sKOLXKO, W SREDNEM, AWTOMOBILEJ PROEDET MIMO POSTA gai ZA SUTKI?
N = 8 |
2 |
3 |
7 |
4 |
8 |
2 |
5 |
3 |
2 |
6 |
4 |
2 |
8 |
6 |
1 |
< |
3 |
2 |
4 |
2 |
9 |
5 |
2 |
4 |
1 |
3 |
5 |
8 |
4 |
6 |
3 |
2. w REZULXTATE: |
PROWEDENNYH SLU^AJNYH IZMERENIJ ABSOL@TNYH ZNA- |
||||||||||||||
^ENIJ TOKA (I a) W \LEKTRI^ESKOJ CEPI POLU^ENY SLEDU@]IE ZNA^E- NIQ:
I = 8 |
1 38 3 13 4 02 4 37 4 18 5 23 5 64 5 73 5:91 6 3 |
|
6 88 7 38 7 48 8 52 8 73 9 47 9 59 10 13 10 19 10 8 |
||
< |
: , - oPREDELITX SREDN@@ MO]NOSTX TOKA W CEPI ESLI EE AKTIWNOE SOPRO
TIWLENIE SOSTAWLQET 2 oM.
3. pO USLOWIQM ZADA^ 1 I 2
A) SOSTAWITX STATISTI^ESKU@ TABLICU RASPREDELENIQ OTNOSITELXNYH ^ASTOT SLU^AJNOJ WELI^INY,
b) POSTROITX POLIGON I GISTOGRAMMU RASPREDELENIQ.
4. dANA STATISTI^ESKAQ TABLICA RASPREDELENIQ ^ASTOT W SLU^AJNOJ WYBORKE.
a)pOSTROITX POLIGON I GISTOGRAMMU RASPREDELENIQ.
b)nAJTI WELI^INY x I s2 WYBORKI.
c)zAPISATX TEORETI^ESKIJ ZAKON RASPREDELENIQ. nAJTI TEORETI- ^ESKIE ZNA^ENIQ WEROQTNOSTEJ I SRAWNITX IH S WELI^INAMI OTNOSITELXNYH ^ASTOT.
d)iSPOLXZOWATX KRITERIJ pIRSONA DLQ USTANOWLENIQ PRAWDOPO- DOBNOSTI WYBRANNOJ GIPOTEZY O ZAKONE RASPREDELENIQ.
1) |
xi |
3 4 5 6 7 8 9 10 11 12 |
|
ni |
13 8 9 11 15 9 8 5 13 9 |
||
|
(ISPOLXZOWATX ZAKON RAWNOMERNOGO RASPREDELENIQ)
30
|
2) |
|
xi |
|
0 1 |
2 3 4 |
5 6 7 8 9 |
|
||||
|
|
ni |
|
3 7 |
8 15 |
18 |
26 |
11 5 |
4 |
3 |
|
|
|
|
|
|
|
||||||||
|
(ISPOLXZOWATX ZAKON RASPREDELENIQ pUASSONA) |
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
||
3) |
xi |
|
[0 1] |
[1 2] |
[2 3] |
[3 4] |
[4 5] |
[5 6] |
[6 7] |
[7 8] |
||
ni |
|
3 |
|
6 |
14 |
21 |
35 |
15 |
5 |
1 |
||
|
|
|
||||||||||
(ISPOLXZOWATX ZAKON NORMALXNOGO RASPREDELENIQ)
5. dLQ NORMALXNO RASPREDELENNOJ SLU^AJNOJ WELI^INY (TABL.3, ZA- DA^A 4) OPREDELITX DOWERITELXNYJ INTERWAL, W KOTORYJ S NADEVNOS- TX@ p = 0 95 POPADAET ISTINNOE ZNA^ENIE (MATEMATI^ESKOE OVIDA- NIE) SLU^AJNOJ WELI^INY.
6.nAJTI DOWERITELXNYJ INTERWAL DLQ OCENKI MATEMATI^ESKOGO
OVIDANIQ a NORMALXNOGO RASPREDELENIQ S NADEVNOSTX@ 0:9 ZNAQ WYBORO^NU@ SREDN@@ x = 69:12 OB_EM WYBORKI n = 100 I SRED- NEKWADRATI^ESKOE OTKLONENIE = 10:
7. pO DANNYM KORRELQCIONNOJ TABLICY ZNA^ENIJ xi yi SLU^AJNYH WELI^IN X I Y
a)NANESTI TO^KI (xi yi) NA KOORDINATNU@ PLOSKOSTX, I SOEDINITX IH LOMANOJ,
b)PODOBRATX FUNKCIONALXNU@ ZAWISIMOSTX y = f(x), NAIBOLEE HO- RO[O OPISYWA@]U@ DANNU@ KORRELQCIONNU@. lINEARIZOWATX, ESLI TREBUETSQ, \TU ZAWISIMOSTX, ISPOLXZUQ NOWYE PEREMENNYE,
c)SOSTAWITX URAWNENIE LINII REGRESSII I OPREDELITX KO\FFICI- ENT KORRELQCII. oCENITX TESNOTU SWQZI MEVDU WELI^INAMI X I Y .
1) |
|
xi |
0 |
0,45 |
0,9 |
1,35 |
1,8 |
2,25 |
2,7 |
3,15 |
||
|
yi |
0,1 |
0,94 |
1,68 |
2,58 |
4,04 |
5,4 |
6,85 |
8,2 |
|
||
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
2) |
|
xi |
|
1 |
8 |
15 |
22 |
29 |
36 |
43 |
50 |
|
|
yi |
|
2,22 |
2,66 |
3,06 |
3,26 |
3,41 |
3,61 |
3,71 |
3,86 |
|
|
|
|
|
|
|||||||||
31
