ИДЗ_1 / VAR-9
.PDF
zadanie N 14 |
wARIANT 9 |
dIFFERENCIALXNYE URAWNENIQ I SISTEMY
1. nAJTI OB]IE RE[ENIQ URAWNENIJ
1) |
(cos y |
; |
sin y |
+ 1)y0 |
= sin x + cos x |
; |
1: |
|||||||||||||
2) |
xy0 |
|
|
|
|
(20x |
2 |
|
2 |
: |
|
|
|
|
|
|||||
; |
3y = |
; |
|
+ 12)y |
|
|
|
|
|
|
||||||||||
|
xy0 |
|
|
|
|
|
x |
|
|
|
|
|
|
|
|
|
|
|
||
3) |
; y = |
|
|
: |
|
|
|
|
|
|
|
|||||||||
arctg (y=x) |
|
|
y |
|
|
|
||||||||||||||
4) |
(y + p |
|
x |
|
|
)dx + (x + p |
|
|
)dy = 0: |
|||||||||||
|
|
|
|
|
|
|
|
|
||||||||||||
|
2 |
|
|
2 |
x |
2 |
+ y |
2 |
||||||||||||
|
|
|
|
x + y |
|
|
|
|
|
|
|
|
|
|
|
|||||
5) |
(13y3 |
; |
x) y0 |
= 4y: |
|
|
|
|
|
|
|
|
|
|
||||||
|
xy0 |
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
||
6) |
; y = x : |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
2. nAJTI ^ASTNYE RE[ENIQ URAWNENIJ
1) |
y0 |
= xe2x + y |
y(0) |
= 2: |
|
|
y |
|
|
2) |
(1 + e3y)x dx = e3ydy |
y(2) |
= 0: |
|
3) |
(x + 2y) dx ; x dy = 0 y(;1) = 3: |
|||
4) |
y0 |
+ 2xy = 2x3 y3 |
y(0) |
= p2: |
3. nAJTI RE[ENIQ URAWNENIJ WYS[EGO PORQDKA
1) (x2 + 9) y00 = x: 3) y00(1 + y) = 5(y0)2:
5) y00 + 2y0 + y = ex;x :
7) y00 ; 4y0 = 8 ; 16x: 9) y000 + y00 = 5x2 ; 1
2) (1 ; x2) y00 ; xy0 = 2:
4) y00 = y0 y(0) = 1 : py y0(0) = 2
6) y00 + 9y = |
1 |
: |
|
sin 3x |
|||
|
|
8) y00 + 36y = 24 sin 6x ; 12 cos 6x: 10) y000 + 2y00 + y0 = (8x + 4)ex:
11) (x + 2)2 y00 + 3(x + 2) y0 |
; 3y = 0 |
12) x2 y00 |
; 2x y0 + 2y = 4x: |
|||
13) x + x ; 2x = 9t cos t |
x(0) = 1 |
|
x(0) = 0: |
|||
14) x ; 4x + 4x = t2 e2t |
x(0) = 2 |
|
x(0) = 3: |
|||
4. nAJTI RE[ENIQ LINEJNYH SISTEM |
|
|
|
|||
1) 8 x = x ; 2y |
: |
|
2) 8 x = ;2x ; y |
|
x(0) = 2 |
|
< y = x + 4y |
|
|
< y = x ; 2y |
|
y(0) = 0: |
|
: |
|
|
: |
|
|
|
3) 8 x = 3x ; y |
|
: |
4) 8 x = 3x + 4y ; e4;t3t : |
|||
< y = 4x + 7y |
|
< y = 4x ; 3y ; e |
|
|||
: |
|
|
:23 |
|
|
|
zadanie N 15 |
wARIANT 9 |
~ISLOWYE I FUNKCIONALXNYE RQDY.
1. nAJTI SUMMY ^ISLOWYH RQDOW
1) |
1 |
1 |
|
2) |
1 |
|
|
14 |
|
|
3) |
1 |
n ; 1 |
X |
4n |
1 |
X |
49n2 |
; |
|
; |
|
X |
||||
|
|
28n |
45 |
|
n(n + 1)(n + 2) |
||||||||
|
n=0 |
|
n=1 |
|
|
|
n=1 |
||||||
|
; |
|
|
|
|
|
|
|
|
|
2. iSSLEDOWATX RQDY NA SHODIMOSTX
1
1) nX=1
1
3) nX=1
5) 1
nX=1
7) 1
nX=2
1
qn2(n + 3) 4nnnn!
2n n=3
3n2 + 1!
1
n ln n ln(ln n)
2) |
1 |
(;1)n3;2n |
|
|
||||||
|
X |
|
|
|
|
|
|
|
|
|
|
n=1 |
|
|
|
|
|
|
|
|
|
|
1 |
|
n 2n + 3 |
|||||||
|
X |
|
|
|
|
|
|
|
|
|
4) |
|
|
pn |
|
|
5n |
||||
n=1(;1) |
|
|
|
|||||||
|
1 |
|
n |
|
3 |
|
2n |
|||
6) |
X |
(;1) |
|
|
|
|
|
|
||
n=1 |
|
arctg (1=n) |
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
n e;pn |
|
|
|||||
|
X |
; |
|
p |
|
|
|
|
||
|
|
2 |
|
|
||||||
8) |
( 1) |
|
3 |
|
n |
|
|
|
|
|
n=1 |
|
|
|
|
|
|
||||
3. nAJTI INTERWALY SHODIMOSTI FUNKCIONALXNYH RQDOW
1) |
1 n (n + |
1) xn |
||
|
X |
|
n |
|
|
n=1 |
|
||
|
1 |
x |
! |
|
3) |
X |
|
||
x + 1 |
||||
|
||||
|
|
|||
|
n=1 |
|
||
2) |
1 ( |
; |
1)n (x ; 1)2n |
|
|
n=1 |
|
n 9n |
|
|
X |
|
|
|
4) |
1 cos nx |
|
||
nX=1 enx
4. nAJTI SUMMY FUNKCIONALXNYH RQDOW
1) |
1 |
|
|
x2n |
|
|
2) |
1 |
(2n2 |
+ 2n + 1)xn |
X |
(2n |
; |
2)(2n |
; |
1) |
X |
||||
|
n=1 |
|
|
|
n=0 |
|
|
5. rAZLOVITX W RQD tEJLORA PO STEPENQM (x ; x0) FUNKCII
3 |
|
|
|
|
|
1 |
e;x2 |
|
||
|
|
|
|
|
|
|||||
1) y = px x0 |
= 8: |
2) y = |
|
;x2 |
|
x0 = 0 |
||||
3) y = ln x x0 = 5 |
4) y = |
|
|
3 |
|
|
x0 = 0: |
|||
|
|
|||||||||
2 ; x ; x2 |
||||||||||
6. wY^ISLITX INTEGRALY S TO^NOSTX@ DO 0,001
1) Z1 cos x4 dx |
0 5 |
x ;xsin3 |
x dx |
2) Z |
|||
0 |
0 |
|
|
24
zadanie N 16 |
wARIANT 9 |
rQDY fURXE. iNTEGRAL fURXE |
|
|
|
1. zADANNU@ NA INTERWALE (;l l) FUNKCI@ RAZLOVITX W TRIGONOMET- RI^ESKIJ RQD fURXE. pOSTROITX GRAFIK SUMMY POLU^ENNOGO RQDA.
|
1) f(x) = jxj + x x 2 (; ) |
|
|
|
||||||||
|
2) f(x) = 1 ; sin3 x |
x 2 (; =2 =2) |
|
|||||||||
|
|
8 1=4 |
|
|
; < x < 0 |
|
|
|
||||
|
|
< |
|
|
|
|
|
|
|
|
|
|
|
3) f(x) = > x ; 1 |
|
0 |
|
x < |
|
|
|
||||
|
f(x) = 8 |
> |
4 |
|
|
|
|
|
|
|
|
|
2. fUNKCI@ |
:0 |
|
0 < x < 1 |
RAZLOVITX W RQD fU- |
||||||||
|
< |
2(x ; |
1) 1 x < 2 |
|
|
|
|
|||||
RXE PO ORTOGONALXNOJ:SISTEME FUNKCIJ |
(sin |
n x |
|
n = 1 2 :::1). |
||||||||
2 |
||||||||||||
pOSTROITX GRAFIK SUMMY POLU^ENNOGO RQDA. |
|
|
|
|
||||||||
3. fUNKCI@ |
f(x) = 8 |
;1 |
0 < x < 1 |
RAZLOVITX W RQD fURXE |
||||||||
|
< |
1 + x |
1 x < 3 |
|
|
|
|
|
||||
|
: |
|
|
n x |
n = 0 1 2 ::: |
|
). pOSTROITX |
|||||
PO ORTOGONALXNOJ SISTEME (cos |
|
|
1 |
|||||||||
GRAFIK SUMMY POLU^ENNOGO RQDA. 3 |
|
|
|
|
|
|
|
|||||
4. fUNKCI@ |
f(x) = x + 4 |
; < x < |
PREDSTAWITX TRIGONO- |
|||||||||
METRI^ESKIM RQDOM fURXE W KOMPLEKSNOJ FORME. zAPISATX:
a)SPEKTRALXNU@ FUNKCI@ S(!n),
b)AMPLITUDNYJ SPEKTR A(!n) = jS(!n)j
c)FAZOWYJ SPEKTR '(!n) = arg S(!n).
|
8 x 0 < x < 1 |
2 |
|
||||
5. fUNKCI@ f(x) = > |
2 ; |
3x 1 |
x |
PREDSTAWITX INTEGRA- |
|||
|
< |
0 |
x < 0 x > 2 |
|
|||
|
> |
|
|
|
|
|
|
LOM fURXE. |
: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6. nAJTI PREOBRAZOWANIE fURXE |
F(!) FUNKCII |
||||||
|
f(x) = 8 |
2 ; x 0 x |
2 |
||||
|
|
< |
0 |
x < 0 |
x > 2 |
||
7. nAJTI SINUS PREOBRAZOWANIE: |
fURXE |
Fs(!) |
FUNKCII |
||||
|
f(x) = 8 sh x 0 < x 1 |
||||||
|
|
|
< 0 |
x > 1 |
|
||
|
|
|
:25 |
|
|
|
|
zadanie N 17 |
wARIANT 9 |
kOMPLEKSNYE ^ISLA I FUNKCII
1. |
dANY ^ISLA |
z1 = ;3 + 4i z2 = 5 |
; 2i: |
|
|
wY^ISLITX |
: |
|||||||||
|
|
|
|
|
|
|
|
|
1 ; z2 |
|
|
z1 z2 |
|
|
||
1) |
2z1 |
; |
3z2 |
2) (z2)2 |
3) |
|
z |
4) |
|
|||||||
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
z2 |
|
|
z1 + z2 |
|
||||
5) |
q |
|
6) |
ln z1 |
7) |
cos z2 |
8) |
sh z1: |
|
|||||||
z1z22 |
|
|||||||||||||||
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rEZULXTATY WY^ISLENIJ PREDSTAWITX W POKAZATELXNOJ I ALGEBRAI- ^ESKOJ FORMAH.
2. oPREDELITX I POSTROITX NA KOMPLEKSNOJ PLOSKOSTI SEMEJSTWA LINIJ, ZADANNYH URAWNENIQMI
|
|
1) Im (ln z) = C |
2) |
jzj = C arg z: |
|||
3. |
rE[ITX URAWNENIQ |
|
|
|
|
|
|
|
|
1) tg 2z = 1=p |
|
|
|
|
|
|
|
3 |
2) |
i sin 2z = 1: |
|||
4. |
nA KOMPLEKSNOJ PLOSKOSTI ZA[TRIHOWATX OBLASTI, W KOTORYH PRI |
||||||
OTOBRAVENII FUNKCIEJ |
f(z) = |
5z + 2i ; 1 IMEET MESTO |
|||||
|
a) |
SVATIE k 1 |
|
|
|
4iz ; 3 |
|
|
0 90o. |
|
|||||
|
b) |
POWOROT NA UGOL |
|
||||
5. |
dOKAZATX, ^TO FUNKCIQ v(x : y) = e;2x cos 2y MOVET SLUVITX |
||||||
MNIMOJ ^ASTX@ ANALITI^ESKOJ FUNKCII f(z) = u + iv I NAJTI EE.
6. wY^ISLITX INTEGRALY
|
|
|
Z |
dz |
L : f j z j = 1 |
Im z > 0 g |
||||||||||
|
1) |
|
z GDE |
|||||||||||||
|
|
(L) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2) |
|
Z |
Im z dz |
GDE |
L : |
OTREZOK |
[1 |
|
i]: |
||||||
|
|
(L) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7. wY^ISLITX, |
ISPOLXZUQ INTEGRALXNU@ FORMULU kO[I |
|||||||||||||||
|
z3 |
|
|
|
|
|
|
8 |
1) |
|
z |
|
= 1=2 |
|||
I |
; 5z ;34 |
dz |
GDE |
L : |
2) |
jzj |
|
1 |
j |
= 1=2 |
||||||
|
|
|||||||||||||||
z(1 |
; |
z) |
|
|
> |
3) |
j |
z |
; |
|
|
|||||
(L) |
|
|
|
|
|
|
< |
j |
j |
= 2: |
||||||
|
|
|
|
|
|
|
|
> |
|
|
|
|
|
|
||
|
|
|
|
|
|
26 |
: |
|
|
|
|
|
|
|
|
|
zadanie N 18 |
wARIANT 9 |
wY^ETY I IH PRILOVENIQ
1. iSSLEDOWATX NA ABSOL@TNU@ I USLOWNU@ SHODIMOSTX RQD
1 |
|
5 |
|
|
|
X |
|
|
|
|
: |
9n2 |
+ 12ni |
; |
5 |
||
n=1 |
|
|
|
|
|
2. nAJTI I POSTROITX OBLASTX SHODIMOSTI RQDA
1 |
|
z |
|
n |
1 |
|
1 n |
|
X |
( |
5 |
) |
+ |
X |
( |
z |
) : |
|
|
|||||||
n=0 |
|
|
|
n=1 |
|
|
||
|
|
|
|
|
|
|
||
3. nAJTI WSE LORANOWSKIE RAZLOVENIQ DANNOJ FUNKCII PO STEPENQM
z ; z0 |
5z + 100 |
|
|
|
2z |
|
|
|
A) |
|
z0 = 0 |
B) sin |
z0 |
= 4: |
|||
|
|
|||||||
50z2 + 5z3 ; z4 |
z ; 4 |
4.dLQ FUNKCII f(z) = z=(1 ; sin2 z) NAJTI IZOLIROWANNYE OSOBYE TO^KI I OPREDELITX IH TIP.
5.dLQ DANNYH FUNKCIJ NAJTI WY^ETY W UKAZANNYH OSOBYH TO^KAH
A) |
ez;2 ; 1 |
|
z = 2 |
B) |
|
ez |
|
|
|
z |
= |
; |
1 |
||||||
|
|
z2(z + 1)6 |
|||||||||||||||||
|
|
z |
; |
2 |
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
e |
5z |
|
|
|
|
|
|
||
W) |
cos |
1 |
+ 1 |
|
z = 0 |
G) |
|
|
|
; 1 |
|
z = 0 |
|||||||
|
|
|
|
|
|
||||||||||||||
z |
|
ch z ; |
1 ; z2 |
=2 |
|||||||||||||||
|
|
|
|
z |
|
|
|
|
|
|
|
|
|||||||
|
|
2z |
|
|
|
z + 1 |
|
|
|
|
|
|
2i |
|
|
|
|
||
D) |
|
|
|
sin |
|
z = 1 |
E) |
z3 ln (1 ; z ) |
z = 1. |
||||||||||
|
z2 ; |
4 |
2z |
||||||||||||||||
6. wY^ISLITX INTEGRALY |
|
|
|
|
|
|
|
|
|
|
|
||||||||
A) |
Z |
|
|
|
sin2 z |
|||||||
|
|
|
|
|
|
|
dz |
|||||
|
(z |
; |
=2)3 |
|||||||||
|
jz;2j=2 |
|
|
|
|
|
|
|
||||
|
1 |
|
|
|
dx |
|
|
|
|
|
||
W) Z |
|
|
|
|
|
|||||||
x2 |
+ x + 2 |
|||||||||||
|
;1 |
|
|
|
|
|
|
|
|
|
|
|
D) |
Z2 |
4p |
|
sin1 |
|
|
|
dt |
||||
3 |
t |
; |
7 |
|||||||||
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
B)
G)
E)
Z |
|
(z cos z1 ; e2=z)dz |
|||||||
jzj=1 |
|
|
|
|
|
|
|
|
|
1+i1 |
x sin(;2x)dx |
||||||||
Z |
|
|
|||||||
|
|
|
x2 |
+ 4 |
|
|
|||
1;i1 |
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
1 |
|
|
|
Z |
|
|
|
|
|
|
|
|
|
(2p |
|
+ p |
|
cos t)2 |
dt. |
||||
2 |
7 |
||||||||
0 |
|
|
|
|
|
|
|
|
|
27
zadanie 19 |
wARIANT 9 |
oPERACIONNYJ METOD
1. nAJTI IZOBRAVENIQ SLEDU@]IH FUNKCIJ
|
|
1) |
f(t) = t e3t |
cos t: |
|
|
3) f(t) = Zt e;2 sin 3 d : |
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
2) f(t) = t sh t: |
|
|
4) f(t) = 8 0 (t |
1) |
|
t < 1 |
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
< e; ; |
|
t 1: |
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: |
|
|
|
|
|
|
2. nAJTI ORIGINALY FUNKCIJ PO ZADANNYM IZOBRAVENIQM |
||||||||||||||||||||
|
|
|
1) F (p) = |
p |
|
: |
|
2) F (p) = |
|
e;2p |
|
: |
|
|||||||
|
|
|
p4 + 4 |
|
p2(p ; 2) |
|
||||||||||||||
3. |
nAJTI RE[ENIE ZADA^I kO[I OPERACIONNYM METODOM |
|
||||||||||||||||||
|
|
1) |
x ; 2x = t2 ; 1 |
|
|
|
|
x(0) = 0: |
|
|
|
|
||||||||
|
|
2) |
x ; x = tet |
|
|
|
|
x(0) = 1 |
x(0) = 0: |
|||||||||||
|
|
3) x + 4x = 1 ; t |
|
|
|
|
x(0) = 0 |
x(0) = 2: |
||||||||||||
|
|
4) |
x ; 2x + x = t ; sin t |
|
x(0) = 0 |
x(0) = 0: |
||||||||||||||
4. |
rE[ITX URAWNENIQ, ISPOLXZUQ FORMULU d@AMELQ |
|
|
|
||||||||||||||||
|
1) |
x ; x = |
|
e2t |
|
|
|
|
x(0) = 0 x(0) = 0: |
|
|
|
|
|||||||
|
2 + et |
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
8 |
0 |
|
|
t |
< |
1 |
|
|
|
|
|
|
|
|
|
|
2) |
x + 9x = |
> |
1 |
1 |
|
t |
3 |
x(0) = 0 |
|
x(0) = 0: |
|||||||||
|
|
|
|
|
3 |
3 |
< |
t |
5 |
|
|
|
|
|
|
|
||||
|
|
|
|
|
< |
0 |
|
|
t |
> |
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
> |
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5. nAJTI RE[ENIE SISTEM OPERACIONNYM METODOM |
|
|
|
|
||||||||||||||||
1) |
8 x = 4x ; y |
|
|
|
x(0) = 0 |
2) |
8 x = 4x + 2y |
|
|
|
x(0) = ;4 |
|||||||||
|
< y |
= ;3x + 6y |
|
|
y(0) = 5: |
|
< y = ;2x |
+ 4y |
|
|
y(0) = 0: |
|||||||||
|
: |
|
|
|
|
|
|
|
|
|
|
|
|
: |
|
|
|
|
|
|
28
zadanie 20 |
wARIANT 9 |
|
tEORIQ WEROQTNOSTEJ |
|
|
1. tRI STRELKA STRELQ@T KAVDYJ PO SWOEJ MI[ENI PO 2 RAZA. wE- ROQTNOSTX POPADANIQ W MI[ENX KAVDYM IZ STRELKOW SOOTWETSTWEN- NO 0.6, 0.7 I 0.8. wYIGRYWAET TOT, U KOGO BUDET BOLX[E POPADANIJ. nAJTI WEROQTNOSTX TOGO, ^TO WYIGRA@T 1-YJ I 2-OJ STRELOK, NABRAW ODINAKOWOE KOLI^ESTWO O^KOW.
2.oTDEL TEHNI^ESKOGO KONTROLQ PROWERQET PARTI@ IZ 20 DETALEJ. wEROQTNOSTX TOGO, ^TO DETALX STANDARTNA, RAWNA 0.8. nAJTI NAIWE- ROQTNEJ[EE ^ISLO DETALEJ, KOTORYE BUDUT PRIZNANY STANDARTNYMI.
3.tELEGRAFNOE SOOB]ENIE SOSTOIT IZ "TO^EK" I "TIRE". sTATIS- TI^ESKIE SWOJSTWA POMEH TAKOWY, ^TO ISKAVA@TSQ W SREDNEM 2/5 SO- OB]ENIJ "TO^KA" I 1/3 SOOB]ENIJ "TIRE". iZWESTNO, ^TO SREDI PERE- DAWAEMYH SIGNALOW "TO^KA" I "TIRE" WSTRE^A@TSQ W OTNO[ENII 5:3. pRINQT SIGNAL "TO^KA". oPREDELITX WEROQTNOSTX TOGO, ^TO BYL PE- REDAN SIGNAL "TO^KA".
4.sREDNEE ^ISLO PASMURNYH DNEJ W GODU W DANNOJ MESTNOSTI RAWNO
240.nAJTI WEROQTNOSTX TOGO, ^TO W BLIVAJ[U@ NEDEL@ BUDET NE BO- LEE 4-H PASMURNYH DNEJ. (s^ITATX, ^TO W GODU ROWNO 52 NEDELI).
5. sLU^AJNAQ WELI^INA X |
RASPREDELENA NORMALXNO S MATEMA- |
TI^ESKIM OVIDANIEM a = 10 |
I SREDNE KWADRATI^ESKIM OTKLONE- |
NIEM = 5. nAJTI INTERWAL, SIMMETRI^NYJ OTNOSITELXNO MATE- MATI^ESKOGO OVIDANIQ, W KOTORYJ S WEROQTNOSTX@ 0.9973 POPADET WELI^INA X W REZULXTATE ISPYTANIQ.
6. zADANA PLOTNOSTX RASPREDELENIQ NEPRERYWNOJ SLU^AJNOJ WELI-
^INY |
8 2 |
0 |
x |
|
|
|
|||
|
< |
x < 0 |
|
|
|
1 + a! 0 x |
|
||
|
f(x) = > a |
a |
||
|
> |
0 |
x > a |
|
|
|
|
|
|
1) |
: |
a |
|
|
NAJTI ZNA^ENIE |
|
|
||
2) |
NAJTI FUNKCI@ RASPREDELENIQ |
F(x), |
||
3)POSTROITX GRAFIKI FUNKCIJ F(x) I f(x)
4)WY^ISLITX MATEMATI^ESKOE OVIDANIE M(X) I DISPERSI@ D(X),
5)WY^ISLITX WEROQTNOSTX P (0 < X < a=2).
29
zadanie 21 |
wARIANT 9 |
mATEMATI^ESKAQ STATISTIKA
1. pROWODILSQ PODS^ET KOLI^ESTWA PROEZVA@]IH MIMO POSTA gai W TE^ENII 1-OJ SLU^AJNO WYBRANNOJ MINUTY (SLU^AJNAQ WELI^INA X). tAKIH NABL@DENIJ PROWEDENO 30, REZULXTATY NABL@DENIJ PRIWEDE- NY W TABLICE. sKOLXKO, W SREDNEM, AWTOMOBILEJ PROEDET MIMO POSTA gai ZA NEDEL@?
N = 8 |
4 |
4 |
2 |
3 |
4 |
5 |
6 |
8 |
4 |
9 |
3 |
5 |
2 |
1 |
8 |
< |
2 |
4 |
7 |
1 |
3 |
5 |
3 |
2 |
6 |
1 |
2 |
6 |
4 |
9 |
7 |
2. w REZULXTATE: |
PROWEDENNYH SLU^AJNYH IZMERENIJ ABSOL@TNYH ZNA- |
||||||||||||||
^ENIJ TOKA (I a) W \LEKTRI^ESKOJ CEPI POLU^ENY SLEDU@]IE ZNA^E- NIQ:
I = 8 |
1 28 3 03 3 92 4 25 4 06 5 11 5 54 5 63 5 81 6 2 |
< |
6 78 7 3 7 38 8 42 8 63 9 37 9 49 10 03 10 07 10 68 |
: , - oPREDELITX SREDN@@ MO]NOSTX TOKA W CEPI ESLI EE AKTIWNOE SOPRO
TIWLENIE SOSTAWLQET 5 oM.
3. pO USLOWIQM ZADA^ 1 I 2
A) SOSTAWITX STATISTI^ESKU@ TABLICU RASPREDELENIQ OTNOSITELX- NYH ^ASTOT SLU^AJNOJ WELI^INY,
b) POSTROITX POLIGON I GISTOGRAMMU RASPREDELENIQ.
4. dANA STATISTI^ESKAQ TABLICA RASPREDELENIQ ^ASTOT W SLU^AJ- NOJ WYBORKE.
a)pOSTROITX POLIGON I GISTOGRAMMU RASPREDELENIQ.
b)nAJTI WELI^INY x I s2 WYBORKI.
c)zAPISATX TEORETI^ESKIJ ZAKON RASPREDELENIQ. nAJTI TEORETI- ^ESKIE ZNA^ENIQ WEROQTNOSTEJ I SRAWNITE IH S WELI^INAMI OTNOSI- TELXNYH ^ASTOT.
d)iSPOLXZOWATX KRITERIJ pIRSONA DLQ USTANOWLENIQ PRAWDOPO- DOBNOSTI WYBRANNOJ GIPOTEZY O ZAKONE RASPREDELENIQ.
1) |
xi |
0,5 |
1 |
1,5 |
2 |
2,5 |
3 |
3,5 |
4 |
4,5 |
5 |
|
ni |
11 |
7 |
8 |
15 |
10 |
13 |
11 |
4 |
15 |
6 |
||
|
(ISPOLXZOWATX ZAKON RAWNOMERNOGO RASPREDELENIQ)
30
2) |
xi |
0 1 |
|
2 3 4 5 6 7 8 9 |
|||||||||
ni |
32 30 21 7 3 2 2 0 2 1 |
||||||||||||
|
|||||||||||||
(ISPOLXZOWATX ZAKON RASPREDELENIQ pUASSONA) |
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3) |
|
xi |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
|
|
|
|
ni |
1 |
3 |
7 |
10 |
22 |
26 |
20 |
9 |
|
||
|
|
|
|
||||||||||
(ISPOLXZOWATX ZAKON NORMALXNOGO RASPREDELENIQ)
5. dLQ NORMALXNO RASPREDELENNOJ SLU^AJNOJ WELI^INY (TABL.3, ZA- DA^A 4) OPREDELITX DOWERITELXNYJ INTERWAL, W KOTORYJ S NADEVNOS- TX@ p = 0 95 POPADAET ISTINNOE ZNA^ENIE (MATEMATI^ESKOE OVIDA- NIE) SLU^AJNOJ WELI^INY.
6.nAJTI DOWERITELXNYJ INTERWAL DLQ OCENKI MATEMATI^ESKOGO
OVIDANIQ a NORMALXNOGO RASPREDELENIQ S NADEVNOSTX@ 0:9 ZNAQ WYBORO^NU@ SREDN@@ x = 69:15 OB_EM WYBORKI n = 121 I SRED- NEKWADRATI^ESKOE OTKLONENIE = 11:
7. pO DANNYM KORRELQCIONNOJ TABLICY ZNA^ENIJ xi yi SLU^AJNYH WELI^IN X I Y
a)NANESTI TO^KI (xi yi) NA KOORDINATNU@ PLOSKOSTX, I SOEDINITX IH LOMANOJ,
b)PODOBRATX FUNKCIONALXNU@ ZAWISIMOSTX y = f(x), NAIBOLEE HO- RO[O OPISYWA@]U@ DANNU@ KORRELQCIONNU@. lINEARIZOWATX, ESLI TREBUETSQ, \TU ZAWISIMOSTX, ISPOLXZUQ NOWYE PEREMENNYE,
c)SOSTAWITX URAWNENIE LINII REGRESSII I OPREDELITX KO\FFICI- ENT KORRELQCII. oCENITX TESNOTU SWQZI MEVDU WELI^INAMI X I Y .
|
1) |
|
xi |
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
|
||
|
|
yi |
|
{1 |
0,3 |
1,62 |
3,01 |
4,33 |
5,41 6,72 8,02 |
|
|||||
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
2) |
|
|
xi |
|
0,8 |
1,6 |
2,4 |
3,2 |
4,0 |
4,8 |
5,6 |
6,4 |
|||
|
|
|
yi |
|
0,8 |
5,3 |
8,01 |
9,85 |
11,3 |
12,3 |
13,5 |
14,2 |
|||
|
|
|
|
|
|||||||||||
31
