
ИДЗ_1 / VAR-21
.PDF
zadanie N 14 |
wARIANT 21 |
dIFFERENCIALXNYE URAWNENIQ I SISTEMY
1.nAJTI OB]IE RE[ENIQ URAWNENIJ PERWOGO PORQDKA
1) |
sin y + y sin x + x1 ! dx + x cos y ; cos x + 1y! dy = 0: |
||||||||||
|
|
1 + 2x |
|
|
|
1 + 2x |
|
|
|||
2) y0 ; x + x2 |
y = x + x2 |
: |
|
||||||||
3) |
2 y0 + y = |
x |
: |
|
|
|
|
|
|
||
y |
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
4) |
2x y0 |
(x2 + y2) = y (y2 + 2x2): |
|||||||||
5) |
y3 (y |
; |
1) dx + 3xy2 (y |
; |
1) dy = (y + 2) dy: |
||||||
|
|
|
|
p |
|
|
3 |
|
|
||
6) |
|
|
|
x) |
|
|
|||||
x dy ; (1 ; |
|
|
dx = 0: |
|
2. nAJTI ^ASTNYE RE[ENIQ URAWNENIJ
1) |
y0 |
+ |
3 y |
= |
2 |
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|||||||
|
|
|
x |
|
|
x |
|
|
|
|
|
|
|
|
|
|
|
|
|
p1 |
|
|
|
||||
2) |
x |
1 |
; |
y2 dx + y |
|
|
x2 dy = 0 |
||||||
3) |
y0 |
q |
|
3 |
|
|
;4x 2 |
|
|||||
+ 4xy = 4(x + 1) e; |
y |
||||||||||||
4) |
(x2 + y2 + y) dx + (2x y + x + ey) dy = 0 |
3. nAJTI RE[ENIQ URAWNENIJ WYS[EGO PORQDKA
y(1) = 1:
y(0) = 1: y(0) = 1: y(0) = 0:
1) y00 |
= (y02 + 1)3=2: |
|
|
|
||||
3) y00 |
|
1 |
|
|
|
|
|
|
= x ; x |
: |
|
|
|
|
|
||
5) y00 |
; 2y0 |
+ y = |
p |
ex |
|
: |
||
|
|
|
||||||
4 |
; |
x2 |
7) y00 ; 12y0 + 40y = x3 e6x: 9) y(4) + y000 = 12x + 6
2) y000 = 2(y00 ; 1) ctg x: |
|
||||||
4) y00 |
(2y + 3) = 2y02 |
y(0) = 0 |
: |
||||
|
|
|
|
|
|
y0(0) = 3 |
|
6) y00 |
+ y = |
p |
1 |
|
: |
|
|
cos |
2x |
|
|
||||
8) y00 |
; 3y0 = e3x + sin 3x: |
|
10) y000 ; 7y00 + 15y0 ; 9y = (8x ; 12) ex:
11) (2 ; x)2 y00 ; 4(2 ; x) y0 + 6y = 0 |
12) x2 y00 + x y0 + y = cos(2 ln x): |
|
13) x + 25x = cos 5t |
x(0) = 1 |
x(0) = 0: |
14) x + 10x + 25x = t3 + 5t ; 10 |
x(0) = 2 |
x(0) = 3: |
4. nAJTI RE[ENIQ LINEJNYH SISTEM |
|
|
8 x
1) < y
:
8 x
3) < y
:
=x ; 7y
=;3x + 5y
=;5x ; 3y
=3x + y
: |
2) |
8 x = 5x + y |
|
x(0) = 0 |
|
|
< y = ;10x + 7y |
|
y(0) = 2: |
|
|
: |
|
|
: |
4) |
8 x = x ; y + 8t |
: |
|
|
|
< y = 5x ; y |
|
|
|
|
: |
|
|
|
|
23 |
|
|

zadanie N 15 |
wARIANT 21 |
~ISLOWYE I FUNKCIONALXNYE RQDY.
1. nAJTI SUMMY ^ISLOWYH RQDOW
1) |
1 |
0(;n1)1n |
+ |
1 |
1 |
2) |
1 |
|
|
|
7 |
|
|
||
X |
n |
X |
|
2 |
; |
|
; |
|
|||||||
|
@ |
3 |
; |
|
2 |
A |
|
49n |
|
35n |
6 |
||||
|
n=1 |
|
|
|
|
|
|
n=1 |
|
|
|
|
|
|
2. iSSLEDOWATX RQDY NA SHODIMOSTX
13n + 8
3)nX=1 n(n + 1)(n + 2)
|
1 n2 |
|
|
|||||
1) |
e1=n ; 1 |
|||||||
|
X |
|
q |
|||||
|
n=1 |
|
||||||
|
1 |
|
|
(2n)! |
||||
3) |
X |
|
|
|
|
|
|
|
(n + 2) 32n+1 |
||||||||
|
n=1 |
|||||||
|
1 ; n3 !5n=3 |
|||||||
5) |
1 |
|||||||
|
X |
|
|
|
|
|
|
|
|
n=1 |
|
|
|
|
|
|
|
|
1 6;p3n |
|||||||
|
X |
|
|
|
|
|
|
|
7) |
p3n |
|||||||
|
||||||||
|
n=1 |
|
1 |
|
|
|
|
|
|
|
|
|
5n |
n2 |
|||
2) |
(;1)n |
|
|
|
|
|
! |
||||||||
|
|
|
|
|
|
|
|
||||||||
X |
|
10n + 3 |
|||||||||||||
|
n=1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
(;1) |
n tg (3=n) |
|
|||||||||||
4) |
X |
|
|
2n |
|
|
n! |
|
|||||||
|
|
|
|
|
|
|
2 |
|
|
|
|
||||
|
n=1 |
|
|
|
sin |
|
|
|
|
|
|
|
|
||
|
1 |
|
|
n |
|
|
|
|
|
|
|
||||
|
|
|
2n+1 |
|
|||||||||||
|
X |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6) |
(;1) |
|
|
pn |
|
|
|
|
|||||||
n=1 |
|
|
|
|
|
|
|||||||||
|
1 |
|
|
|
|
|
|
( |
|
|
1)n |
|
|||
|
X |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8) |
|
|
|
|
|
|
3 |
; |
|
|
|
|
|||
|
|
|
|
|
|
|
|
q |
|
|
|
|
|||
|
n=1 (5n + 2) 2 + ln(5n + 2) |
3. nAJTI INTERWALY SHODIMOSTI FUNKCIONALXNYH RQDOW
|
|
|
1 (x + 1)3n |
|
|
|
|
|
|
1 |
|
|
|
|
|
n n2 |
|
n2 |
||||||||
|
1) |
X |
|
n (2n |
+ 1) |
|
|
|
|
|
2) |
|
X |
(;1) 3 |
|
x |
||||||||||
|
|
n=1 |
|
|
|
|
|
|
|
|
|
|
|
n=1 |
(;1)n+1 |
|
|
|||||||||
|
3) |
1 |
|
n 2n |
|
|
|
|
1 |
|
|
|
4) |
|
1 |
|
|
|
||||||||
|
X |
|
|
|
|
|
|
|
|
|
|
|
|
X |
|
|
|
|||||||||
|
|
|
n + 2 (3x2 + 8x + 6) |
|
|
|
|
|
en sin x |
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
n=1 |
|
|
|
|||||||||||||||
|
|
n=1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
4. nAJTI SUMMY FUNKCIONALXNYH RQDOW |
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
1 |
|
|
n |
|
1 |
xn+1 |
|
|
1 |
|
2 |
|
|
|
|
|
|
|
|
n+1 |
||||
|
1) |
X |
(;1) ; n(n + 1) |
2) |
X |
(n ; 2n ; 1)x |
|
|||||||||||||||||||
|
|
n=1 |
|
|
|
|
|
|
|
|
|
n=0 |
|
|
|
|
|
|
|
|
|
|||||
5. |
rAZLOVITX W RQD tEJLORA PO STEPENQM |
|
(x ; x0) FUNKCII |
|||||||||||||||||||||||
|
1) y = |
|
|
|
|
4 |
|
|
|
|
x0 = 0: |
2) y = 10x |
|
x0 = 2 |
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
|
|
(1 + x) (1 + 5x) |
|
|||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
3) y = ln(1 + 2x |
|
|
8x2) x0 = 0 |
|
4) |
|
y = |
|
|
|
|
1 |
|
|
|
x0 = 6: |
|||||||||
|
|
|
|
|
|
3 |
|
|
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
; |
|
|
|
|
|
|
|
|
|
|
p |
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x + 21 |
|
|
|||||
6. |
wY^ISLITX INTEGRALY S TO^NOSTX@ DO 0,001 |
|
|
|
|
|
|
|
|
|||||||||||||||||
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
0 5 |
|
|
|
|
x2 |
|
|
||||
|
|
1) |
|
Z x2 sin x dx |
|
2) Z arctg |
|
|
||||||||||||||||||
|
|
|
|
2 dx |
|
|
||||||||||||||||||||
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
24

zadanie N 16 |
wARIANT 21 |
rQDY fURXE. iNTEGRAL fURXE
1. zADANNU@ NA INTERWALE (;l l) FUNKCI@ RAZLOVITX W TRIGONOMET- RI^ESKIJ RQD fURXE. pOSTROITX GRAFIK SUMMY POLU^ENNOGO RQDA.
1) f(x) = ; jxj x 2 (; )
|
2) f(x) = sin 2x |
|
x 2 (;1 1) |
|||||||
|
3) f(x) = 8 |
;4x |
;1=2 < x 0 |
|||||||
|
|
|
< |
;1 0 < x < 1=2 |
||||||
2. fUNKCI@ f(x) = 8 |
|
: |
|
|
|
|
|
|
|
|
1 + x |
0 < x < 2 |
RAZLOVITX W RQD fURXE PO |
||||||||
|
< |
0 |
2 x < 3 |
|
|
|||||
|
: |
|
|
|
|
|
|
n x |
|
n = 1 2 :::1). pOSTRO- |
ORTOGONALXNOJ SISTEME FUNKCIJ (sin |
3 |
|
||||||||
ITX GRAFIK SUMMY POLU^ENNOGO RQDA. |
|
|
|
|||||||
3. fUNKCI@ |
f(x) = 8 x |
; 1 |
0 < x < 2 |
RAZLOVITX W RQD fURXE |
||||||
|
|
< x |
; 3 |
2 x < 4 |
|
|
||||
|
|
: |
|
|
n x |
|
n = 0 1 2 :::1). pOSTROITX |
|||
PO ORTOGONALXNOJ SISTEME (cos |
|
4 |
|
|||||||
GRAFIK SUMMY POLU^ENNOGO RQDA. |
|
|
|
|
|
|||||
4. fUNKCI@ |
f(x) = jxj + x |
;1 < x < 1 |
PREDSTAWITX TRIGONO- |
METRI^ESKIM RQDOM fURXE W KOMPLEKSNOJ FORME. zAPISATX:
a)SPEKTRALXNU@ FUNKCI@ S(!n),
b)AMPLITUDNYJ SPEKTR A(!n) = jS(!n)j
c)FAZOWYJ SPEKTR '(!n) = arg S(!n).
5. fUNKCI@ |
f(x) = 8 x |
1 x 3 |
|
PREDSTAWITX INTEGRALOM |
||
|
|
< 0 |
x < 1 x > 3 |
|
||
fURXE. |
: |
|
|
|
|
|
6. nAJTI PREOBRAZOWANIE fURXE |
F(!) FUNKCII |
|||||
|
|
f(x) = 8 sin x =2 |
x |
|||
|
|
< |
0 x < =2 x > |
|||
7. |
|
: |
|
|
Fs(!) FUNKCII |
|
|
nAJTI SINUS PREOBRAZOWANIE fURXE |
|||||
|
|
f(x) = 8 sh 2x 0 < x 1 |
||||
|
|
< 0 |
x > 1 |
|
|
|
|
|
: |
25 |
|
|

zadanie |
N 17 |
|
|
|
|
|
|
|
|
wARIANT 21 |
|||||
|
|
|
|
|
|
kOMPLEKSNYE ^ISLA I FUNKCII |
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
z1 = p |
|
; 2i |
|
|
|
|
|
|
||||
1. |
dANY ^ISLA |
2 |
|
z2 = 3 + 2i: |
|
|
wY^ISLITX: |
||||||||
|
|
|
|
|
|
|
|
|
1 ; z2 |
|
z1 z2 |
|
|||
1) |
2z1 |
; |
3z2 |
|
2) (z2)2 |
3) |
z |
4) |
|||||||
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
z2 |
|
z1 + z2 |
||||
5) |
q |
|
|
6) |
ln z1 |
7) cos z2 |
8) sh z1: |
||||||||
z1z22 |
|||||||||||||||
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rEZULXTATY WY^ISLENIJ PREDSTAWITX W POKAZATELXNOJ I ALGEBRAI- ^ESKOJ FORMAH.
2. oPREDELITX I POSTROITX NA KOMPLEKSNOJ PLOSKOSTI SEMEJSTWA LINIJ, ZADANNYH URAWNENIQMI
|
|
|
|
1) Im |
1 |
|
|
= C |
2) Re z2 = C: |
|
|
|
|
z + i |
|||||
|
|
|
|
|
|
|
|||
3. |
rE[ITX URAWNENIQ |
|
|
|
|
||||
|
|
1) |
cos 2z ; cos 4z = 0 |
2) z2 ; 3z + 4 ; 2i = 0: |
|||||
4. |
nA KOMPLEKSNOJ PLOSKOSTI ZA[TRIHOWATX OBLASTI, W KOTORYH PRI |
||||||||
OTOBRAVENII FUNKCIEJ |
f(z) = 2z + 3i IMEET MESTO |
||||||||
|
a) |
SVATIE k 1 |
|
|
iz |
+ 4 |
|||
|
0 90o. |
||||||||
|
b) |
POWOROT NA UGOL |
|||||||
5. |
dOKAZATX, ^TO FUNKCIQ u(x y) = 2x ; 2xy ; 4 MOVET SLUVITX |
||||||||
DEJSTWITELXNOJ ^ASTX@ ANALITI^ESKOJ FUNKCII f(z) = u + iv I NAJ- |
|||||||||
TI EE. |
|
|
|
|
|
|
|
|
|
6. |
wY^ISLITX INTEGRALY |
|
|
||||||
|
|
|
Z |
dz |
|
|
|
|
|
|
|
1) |
pz GDE L : f j z j = 1 Im z < 0 g |
||||||
|
|
|
(L) |
|
|
|
|
|
|
|
|
2) |
Z |
(Re z + Im z) dz GDE L |
; LOMANAQ (0 1 1 + 2i): |
||||
|
|
|
(L) |
|
|
|
|
|
|
7. wY^ISLITX, ISPOLXZUQ INTEGRALXNU@ FORMULU kO[I
I |
1 ; cos z |
dz |
GDE L : |
z2(z + 2) |
|
|
|
(L) |
|
|
|
|
|
|
26 |
8 1) |
jzj = 1 5 |
|
< |
|
jz + 2j = 1 |
> |
2) |
|
> |
3) |
jzj = 4: |
: |
|
|

zadanie N 18 |
wARIANT 21 |
wY^ETY I IH PRILOVENIQ
1. iSSLEDOWATX NA ABSOL@TNU@ I USLOWNU@ SHODIMOSTX RQD
1 |
|
|
1 |
|
X |
|
|
|
: |
n |
; |
i cos2(6n) |
||
n=1 |
|
|
|
|
2. nAJTI I POSTROITX OBLASTX SHODIMOSTI RQDA
;1 |
n |
2 n |
1 |
n zn |
|
X |
(;1) (2 |
; n )z + |
X |
(;1) 3n : |
|
n= |
;1 |
n=0 |
|||
|
|
|
|
3. nAJTI WSE LORANOWSKIE RAZLOVENIQ DANNOJ FUNKCII PO STEPENQM z ; z0
A) |
z ; 2 |
z0 = 0 |
B) z sin |
z |
z0 = 3: |
|
z ; 3 |
||||||
|
2z8 + z2 ; z |
|
|
|
4.dLQ FUNKCII (z ; );1ctg z NAJTI IZOLIROWANNYE OSOBYE TO^KI I OPREDELITX IH TIP.
5.dLQ DANNYH FUNKCIJ NAJTI WY^ETY W UKAZANNYH OSOBYH TO^KAH
A) |
|
z + 1 |
|
|
z = ;1 |
|||
|
|
|
|
|
||||
|
sh(z + 1) + sin(z + 1) |
|||||||
W) |
(z + 1) exp |
1 |
|
|
z = i |
|||
|
|
|||||||
|
|
12z + 4z ; i |
|
|
|
|||
D) |
|
ez=(z;4) |
z = 1 |
|||||
121 + 11z ; 2z2 |
||||||||
6. wY^ISLITX INTEGRALY |
|
|
|
2z + 1 |
|
z = ;i |
B) |
z2 + 1 |
|
|
G) |
ch 3z ; 1 |
|
z = 0 |
|
sin z ; z |
|
|
E) |
z5 ln(1 + 1=z) z = 1. |
A) |
jzjZ=3 |
exp(1=z) + 1 dz |
|||||||
|
|
|
z |
|
|
||||
|
|
|
|
|
|
|
|||
|
1 |
|
x ; 1 |
|
|
||||
W) |
Z |
|
|
dx |
|||||
|
|
(x2 |
+ 4)2 |
|
|
||||
|
;1 |
|
|
|
|
|
|
|
|
|
2 |
|
|
|
1 |
|
|
|
|
D) Z |
|
|
|
|
|
|
|
||
|
|
2p |
|
sin t |
dt |
||||
3 |
; |
2 |
|||||||
|
0 |
|
|
|
|
|
|
|
B)
G)
E)
Z |
|
z2 + 1 |
|
|
|
dz |
|
|
(z2 + 4) sin =3 |
||
jz;1j=2 |
|
|
|
1 |
(x3 + 1) sin x |
||
Z |
x4 + 5x2 + 4 dx |
||
;1 |
|
|
|
2 |
|
|
|
1
Z (p3 + p2 cos t)2 dt.
0
27

zadanie 19 |
wARIANT 21 |
oPERACIONNYJ METOD
1. nAJTI IZOBRAVENIQ SLEDU@]IH FUNKCIJ |
|
|
|
|
|
|
|||||||||||||||||
|
|
f(t) = cos6 t: |
|
|
|
|
|
|
|
d |
|
|
|
|
|
|
|
|
|
|
|||
|
1) |
|
|
3) |
f(t) = |
|
|
[t sin(2t ; 4 )]: |
|
|
|
|
|
|
|||||||||
|
|
|
|
dt |
|
|
|
|
|
|
|||||||||||||
|
2) f(t) = eat ; ebt : |
|
|
|
|
8 |
0 |
|
|
|
t |
< |
3 |
|
|||||||||
|
4) f(t) = |
(t |
|
3) e;(t;3) |
3 |
|
|
t 4 |
|||||||||||||||
|
|
|
|
t |
|
|
|
|
|
|
< |
|
; |
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
> |
0 |
|
|
t |
|
4: |
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
> |
|
|
|
> |
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
: |
|
|
|
|
|
|
|
|
|
|
|
2. nAJTI ORIGINALY FUNKCIJ PO ZADANNYM IZOBRAVENIQM |
|
|
|||||||||||||||||||||
|
|
|
1) F (p) = |
p2 + a2 |
: |
|
|
|
|
2) F(p) = ; |
|
e;p |
|
: |
|
|
|
||||||
|
|
|
(p2 ; a2)2 |
|
|
|
|
p2 ; 1 |
|
|
|
||||||||||||
3. |
nAJTI RE[ENIE ZADA^I kO[I OPERACIONNYM METODOM |
|
|
|
|||||||||||||||||||
|
|
1) |
2x + 5x = t et + 2t |
|
|
|
|
|
x(0) = 0: |
|
|
|
|
|
|
||||||||
|
|
2) |
x ; x = t et |
|
|
|
|
|
|
x(0) = 0 |
x(0) = 0: |
||||||||||||
|
|
3) |
x + 2x ; 8x = 3 cos t |
|
|
|
|
|
x(0) = 0 |
x(0) = 1: |
|||||||||||||
|
|
4) 9x + 4x = 5t ; 2 |
|
|
|
|
|
|
x(0) = ;1 |
x(0) = 2: |
|||||||||||||
4. |
rE[ITX URAWNENIQ, ISPOLXZUQ FORMULU d@AMELQ |
|
|
|
|
|
|
||||||||||||||||
|
1) |
x + x = |
|
1 |
|
|
x(0) = 0 |
x(0) = 0: |
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
||||||||||||||||
|
cos t |
|
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
8 |
0 |
t |
< |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2) |
x + 25x = |
< |
;1 0 |
t |
< |
2 |
|
x(0) = 0 |
|
x(0) = 0: |
||||||||||||
|
|
|
|
|
|
|
2 |
|
t |
|
4 |
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
> 1 |
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
> 0 |
t |
> |
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5. nAJTI RE[ENIE SISTEM OPERACIONNYM METODOM |
|
|
|
|
|
|
|||||||||||||||||
1) |
8 x = 2x ; 2y |
|
x(0) = 0 |
|
2) |
8 x = ;2x ; 4y |
|
|
x(0) = ;4 |
||||||||||||||
|
< y = x + 5y |
|
|
|
y(0) = 1: |
|
|
|
|
< y = 4x ; 2y |
|
|
y(0) = 0: |
||||||||||
|
: |
|
|
|
|
|
|
|
|
|
|
|
|
: |
|
|
|
|
|
|
|
|
28

zadanie 20 |
wARIANT 21 |
tEORIQ WEROQTNOSTEJ
1. w PERWOJ KOROBKE 9 BELYH I 6 ^ERNYH [AROW, WO WTOROJ KOROB- KE 5 BELYH I 7 ^ERNYH [AROW. iZ PERWOJ KOROBKI WO WTORU@ NAUGAD PERELOVENO 7 [AROW, A ZATEM IZ WTOROJ KOROBKI IZWLEKA@T 2 [ARA. kAKOWA WEROQTNOSTX, ^TO OBA ONI ^ERNYE ?
2.w KWADRAT SO STORONOJ 0,2 M WPISAN KRUG. w KWADRAT NAUDA^U WBRASYWAETSQ 6 TO^EK. kAKOWA WEROQTNOSTX, ^TO:
1)4 TO^KI POPADUT WNUTRX KRUGA
2)NE MENEE 3-H TO^EK POPADUT WNUTRX KRUGA.
3.bATAREQ IZ TREH ORUDIJ PROIZWELA ZALP, PRI^EM DWA SNARQDA POPA- LI W CELX. nAJTI WEROQTNOSTX TOGO, ^TO PERWOE ORUDIE DALO POPADA- NIE, ESLI WEROQTNOSTX POPADANIQ W CELX PERWYM, WTORYM I TRETXIM ORUDIEM SOOTWETSTWENNO RAWNY 0.6, 0.4, 0.8.
4.w NEKOTOROM GORODE W SREDNEM ROVDAETSQ 27 REBENKA W NEDEL@. kAKOWA WEROQTNOSTX TOGO, ^TO W BLIVAJ[IJ DENX RODITSQ 9 DETEJ ?
5.nA PEREKRESTKE USTANOWLEN AWTOMATI^ESKIJ SWETOFOR, W KOTOROM
45SEKUND GORIT ZELENYJ SWET, 5 SEKUND - VELTYJ I 35 SEKUND KRASNYJ SWET. nAJTI WEROQTNOSTX ToGO, ^TO POD_EHAW[EMU W SLU^AJNYJ MO- MENT WREMENI K PEREKRESTKU AWTOMOBIL@ BUDET GORETX ZELENYJ SWET.
6.zADANA PLOTNOSTX RASPREDELENIQ NEPRERYWNOJ SLU^AJNOJ WELI-
^INY |
8 |
0 |
2 |
x < 0 |
|
|
|
||||
|
< |
|
|
|
4 |
|
f(x) = > a (6x ; 3x ) 0 x |
||||
|
> |
0 |
|
x > 4 |
|
1) |
NAJTI POSTOQNNU@: a, |
|
|
|
|
2) |
NAJTI FUNKCI@ RASPREDELENIQ F (x), |
|
|||
3) |
POSTROITX GRAFIKI FUNKCIJ |
F(x) I f(x) |
|||
4) |
WY^ISLITX MATEMATI^ESKOE OVIDANIE M(X) |
||||
5) |
WY^ISLITX DISPERSI@ D(X) |
|
|
|
|
6) |
WY^ISLITX WEROQTNOSTX |
P (1 < X < 3). |
|
29

zadanie 21 |
wARIANT 21 |
mATEMATI^ESKAQ STATISTIKA
1. oBSLEDOWANO 30 PARTIJ IZDELIJ PO 100 [TUK W KAVDOJ. w KAVDOJ IZ PARTIJ OBNARUVENO BRAKOWANNYH IZDELIJ
N = 8 |
3 |
4 |
9 |
1 |
2 |
5 |
7 |
6 |
4 |
3 |
1 |
5 |
3 |
2 |
8 |
< |
2 |
2 |
4 |
7 |
6 |
3 |
4 |
1 |
3 |
1 |
3 |
4 |
8 |
5 |
7 |
, : , ? kAKOW W SREDNEM PROCENT BRAKA I EGO STANDARTNOE OTKLONENIE
2. w REZULXTATE PROWEDENNYH SLU^AJNYH IZMERENIJ ABSOL@TNYH ZNA^ENIJ TOKA (I a) W \LEKTRI^ESKOJ CEPI POLU^ENY SLEDU@]IE ZNA- ^ENIQ:
I = 8 |
1 2 2 8 3 7 4 2 4 5 5 1 5 4 5 7 5:8 6 2 |
< |
6 7 7 2 7 3 8 2 8 5 9 2 9 4 9 8 10 0 10 3 |
: , - oPREDELITX SREDN@@ MO]NOSTX TOKA W CEPI ESLI EE AKTIWNOE SOPRO
TIWLENIE SOSTAWLQET 4 oM.
3. pO USLOWIQM ZADA^ 1 I 2
A) SOSTAWITX STATISTI^ESKU@ TABLICU RASPREDELENIQ OTNOSITELX- NYH ^ASTOT SLU^AJNOJ WELI^INY,
b) POSTROITX POLIGON I GISTOGRAMMU RASPREDELENIQ.
4. dANA STATISTI^ESKAQ TABLICA RASPREDELENIQ ^ASTOT W SLU^AJ- NOJ WYBORKE.
a)pOSTROITX POLIGON I GISTOGRAMMU RASPREDELENIQ.
b)nAJTI WELI^INY x I s2 WYBORKI.
c)zAPISATX TEORETI^ESKIJ ZAKON RASPREDELENIQ. nAJTI TEORETI- ^ESKIE ZNA^ENIQ WEROQTNOSTEJ I SRAWNITX IH S WELI^INAMI OTNOSI- TELXNYH ^ASTOT.
d)iSPOLXZOWATX KRITERIJ pIRSONA DLQ USTANOWLENIQ PRAWDOPO- DOBNOSTI WYBRANNOJ GIPOTEZY O ZAKONE RASPREDELENIQ.
1) |
xi |
2,0 |
2,1 |
2,2 |
2,3 |
2,4 |
2,5 |
2,6 |
2,7 |
2,8 |
2,9 |
|
ni |
8 |
13 |
4 |
11 |
7 |
12 |
9 |
13 |
14 |
9 |
||
|
(ISPOLXZOWATX ZAKON RAWNOMERNOGO RASPREDELENIQ)
30
|
2) |
|
xi |
0 1 2 |
3 4 5 |
6 7 8 |
9 |
|
||||
|
|
ni |
11 28 |
26 |
|
16 10 |
4 |
2 2 |
1 |
1 |
|
|
|
|
|
|
|
||||||||
|
(ISPOLXZOWATX ZAKON RASPREDELENIQ pUASSONA) |
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
||
3) |
xi |
|
[2 3] |
[3 4] |
[4 5] |
[5 6] |
[6 7] |
[7 8] |
[8 9] |
[9 10] |
||
ni |
|
8 |
22 |
35 |
|
26 |
5 |
3 |
1 |
0 |
||
|
|
|
(ISPOLXZOWATX ZAKON NORMALXNOGO RASPREDELENIQ)
5. dLQ NORMALXNO RASPREDELENNOJ SLU^AJNOJ WELI^INY (TABL.3, ZA- DA^A 4) OPREDELITX DOWERITELXNYJ INTERWAL, W KOTORYJ S NADEVNOS- TX@ p = 0 95 POPADAET ISTINNOE ZNA^ENIE (MATEMATI^ESKOE OVIDA- NIE) SLU^AJNOJ WELI^INY.
6. nAJTI DOWERITELXNYJ INTERWAL DLQ OCENKI MATEMATI^ESKOGO
OVIDANIQ a NORMALXNOGO RASPREDELENIQ S NADEVNOSTX@ |
0:95 ZNAQ |
||
WYBORO^NU@ SREDN@@ |
|
= 75:16 OB_EM WYBORKI n = 64 |
I SREDNE- |
x |
|||
KWADRATI^ESKOE OTKLONENIE = 8: |
|
7. pO DANNYM KORRELQCIONNOJ TABLICY ZNA^ENIJ xi yi WELI^IN X I Y
a)NANESTI TO^KI (xi yi) NA KOORDINATNU@ PLOSKOSTX, I SOEDINITX IH LOMANOJ,
b)PODOBRATX FUNKCIONALXNU@ ZAWISIMOSTX y = f(x), NAIBOLEE HO- RO[O OPISYWA@]U@ DANNU@ KORRELQCIONNU@. lINEARIZOWATX, ESLI TREBUETSQ, \TU ZAWISIMOSTX, ISPOLXZUQ NOWYE PEREMENNYE,
c)SOSTAWITX URAWNENIE LINII REGRESSII I OPREDELITX KO\FFICI- ENT KORRELQCII. oCENITX TESNOTU SWQZI MEVDU WELI^INAMI X I Y .
1) |
xi |
0 |
0,15 |
0,3 |
0,45 |
0,6 |
0,75 |
0,9 |
1,05 |
|
yi |
{0,3 |
1,01 |
2,43 |
3,58 |
5,13 |
6,45 |
7,98 |
9,11 |
||
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
2) |
xi |
20 |
40 |
60 |
80 |
100 |
120 |
140 |
160 |
|
yi |
2,15 |
3,6 |
4,42 |
5,05 |
5,55 |
5,90 |
6,25 |
6,5 |
||
|
31