ИДЗ_1 / VAR-10
.PDF
zadanie N 14 |
wARIANT 10 |
dIFFERENCIALXNYE URAWNENIQ I SISTEMY
1.nAJTI OB]IE RE[ENIQ URAWNENIJ
1)(y + y ln x)dx + (x ; xy) dy = 0:
2)y = x (y0 ; px ey):
3)y0 + y = yx2 :
4) |
x dy + y dx + y dx + x dy |
= 0: |
||
|
|
|
x2 + y2 |
|
5) |
xy0 ; y = x3 arctg x: |
|
||
6) |
2yp |
|
dx ; (6xpy + 7) dy = 0: |
|
y |
||||
2. nAJTI ^ASTNYE RE[ENIQ URAWNENIJ
|
y0 |
|
|
|
y |
|
|||
1) |
; |
|
|
= x2 + 2x |
y(;1) = 3=2: |
||||
x |
+ 2 |
||||||||
2) |
x(y0 |
|
|
y) = ex |
y(1) = e: |
||||
3) |
xy0 |
;2x2p |
|
= 4y |
y(1) = 1: |
||||
y |
|||||||||
|
2 |
;3y |
3 |
|
|||||
4) |
x |
e |
dy = (x + 1)dx |
y(2) = 1: |
|||||
3. nAJTI RE[ENIQ URAWNENIJ WYS[EGO PORQDKA
1) 2(y0)2 = (y ; 1) y00 |
y(0) = 2 |
: |
||
y0(0) = 2 |
||||
3) xy00 = y0 ln(y0=x): |
|
|
||
5) y00 + y = |
1 |
: |
|
|
cos3 x |
|
|
||
|
|
|
|
|
7) y00 ; 2y0 ; 8y = 12 sin 2x ; 36 cos 2x: 9) y(5) ; y(4) = 2x + 3
11)x2 y00 + 5x y0 = 0
13)x ; 3x + 2x = ;t e;2t
14)x + 6x + 13x = e;3t cos 8t
4.nAJTI RE[ENIQ LINEJNYH SISTEM
2) y00 = y13 :
4) y00 = x cos2 x:
6) y00 + 2y0 + y = ex;x :
8) y000 + y00 = 49 ; 24x2:
10) y000 ; 3y00 ; 2y = ;4x ex:
12) x2 y00 ; 4x y0 + 6y = x5:
x(0) = 0 |
x(0) |
= 2: |
x(0) = 2 |
x(0) |
= ;4: |
1) |
8 x = ;3x + 4y |
: |
2) |
8 x = 3x ; y |
|
x(0) = 5 |
|
|
< y = 2x ; y |
|
|
< y = 5x + y |
|
y(0) = 0: |
|
|
: |
|
|
: |
|
|
2t |
|
8 x = ;2x ; y |
|
|
8 x = 6x ; 5y + 3e |
|||
3) |
: |
4) |
2t : |
||||
|
< y = 9x + 4y |
|
|
< y = 7x ; 6y ; 3e; |
|||
|
: |
|
|
: |
|
|
|
|
|
|
|
23 |
|
|
|
zadanie N 15 |
wARIANT 10 |
~ISLOWYE I FUNKCIONALXNYE RQDY.
1. nAJTI SUMMY ^ISLOWYH RQDOW
1) |
1 |
(;1)n;1 |
3 |
! |
n |
2) |
1 |
|
|
14 |
|
|
|
|
|
|
|
|
|
||||||
X |
4 |
|
X |
49n2 |
; |
14n |
; |
48 |
||||
|
n=1 |
|
|
|
|
|
n=1 |
|
|
|
|
|
2. iSSLEDOWATX RQDY NA SHODIMOSTX
13n + 1
3)nX=3 n(n + 1)(n ; 1)
|
1 |
1 |
|
|
|
|
|
1 |
|||
1) |
X |
|
|
|
|
|
|
sin |
|
|
|
|
|
|
|
|
|
|
|
||||
n=1 pn |
|
n + 1 |
|||||||||
|
|
3 |
|
|
|
|
|
|
|
|
|
|
1 |
|
nn |
|
|
|
|
||||
3) |
X |
|
|
|
|
|
|
|
|
|
|
|
3n |
|
|
n! |
|
|
|||||
|
|
|
|
|
|
||||||
|
n=1 |
|
|
|
|
|
|||||
|
|
|
|
n n |
|
|
|||||
|
1 |
|
|
|
|
|
|||||
5) |
X |
cos |
|
2n |
|
|
|||||
|
|
|
|
||||||||
|
n=1 |
|
|
|
|
|
|
|
|
||
|
X |
|
|
|
|
|
|
1 |
|
|
|
7) |
1 |
|
|
|
|
|
|
|
|
||
|
|
|
|
4 |
|
|
|
|
|
|
|
|
n=1 n pln n + 5 |
||||||||||
2) |
1 |
(;1)n |
|
n |
|
|
||||
|
|
|
|
|
|
|
||||
X |
6n 5 |
|
|
|||||||
|
|
n en ; |
|
|
||||||
|
n=2 |
|
|
|
||||||
|
1 |
|
|
|
||||||
4) |
X |
(;1) |
|
n3 |
|
|
||||
n=1 |
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
5n=2 |
|
6) |
1 |
(;1)n |
7n + 3 |
! |
||||||
2n + 9 |
|
|||||||||
|
X |
|
|
|
|
|
|
|
|
|
|
n=1 |
|
|
6pn+4 |
|
|
||||
|
1 |
|
n |
|
|
|||||
|
X |
|
|
|
|
|
|
|
|
|
8) |
|
|
pn + 4 |
|
|
|||||
n=1(;1) |
|
|
|
|||||||
3. nAJTI INTERWALY SHODIMOSTI FUNKCIONALXNYH RQDOW
1) |
1 3nxn |
||||||
|
3 |
|
|
|
|
||
|
|
|
|
|
|
||
|
n=1 |
pn |
|||||
|
X |
|
|
|
1 |
||
3) |
1 |
|
|
|
|||
n=1 |
n! x2n+3 |
||||||
|
|||||||
|
|
|
|
|
|||
|
X |
|
|
|
|||
|
1 |
(x + 2)n2 |
|
2) |
X |
nn |
|
|
n=1 |
||
4) |
1 |
(3 |
; x2)n |
|
X |
|
|
|
n=1 |
|
|
4. nAJTI SUMMY FUNKCIONALXNYH RQDOW
|
|
1) |
1 |
|
|
|
xn+2 |
2) |
1 (n2 + 2n + 2)xn+2 |
||||||||
|
|
X |
|
|
|
|
|
|
|||||||||
|
|
|
(n + 1)(n + 2) |
|
X |
|
|
|
|
|
|||||||
|
|
n=0 |
|
n=0 |
|
|
|
|
|
||||||||
5. |
rAZLOVITX W RQD tEJLORA PO STEPENQM |
(x ; x0) |
FUNKCII |
||||||||||||||
|
1) |
y = sin(x=2) |
x0 = =2 |
2) |
y = |
1 ; e;2x |
|
x0 = 0 |
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x |
|
|
|
3) |
y = ln q |
|
|
|
x0 = 0 |
4) y = x 10;x |
x0 = 2: |
|||||||||
|
(1 ; 4x)3 |
|
|||||||||||||||
|
|
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6. |
wY^ISLITX INTEGRALY S TO^NOSTX@ DO 0,001 |
|
|
||||||||||||||
|
|
|
0 5 |
p |
|
|
|
|
|
|
0 5 |
1 ;xcos2 |
x dx |
|
|||
|
|
|
Z |
|
|
dx |
|
|
Z |
|
|||||||
|
|
1) |
|
1 ; x3 |
|
2) |
|
||||||||||
|
|
|
0 |
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
24
zadanie N 16 |
wARIANT 10 |
rQDY fURXE. iNTEGRAL fURXE
1. zADANNU@ NA INTERWALE (;l l) FUNKCI@ RAZLOVITX W TRIGONOMET- RI^ESKIJ RQD fURXE. pOSTROITX GRAFIK SUMMY POLU^ENNOGO RQDA.
|
1) f(x) = x ; jxj x 2 (;1 1) |
|
|
|
||||||||
|
2) f(x) = 2 ; 2 cos3 x |
x 2 (; =2 =2) |
|
|
||||||||
|
3) f(x) = 8 |
2 |
|
|
; < x < 0 |
|
|
|||||
|
|
< |
;2x 0 x < |
|
|
|
||||||
2. fUNKCI@ f(x) = 8 |
: |
|
|
|
|
|
|
|
|
|
|
|
0 |
|
0 < x < 1 |
RAZLOVITX W RQD fURXE PO |
|||||||||
|
< 2 + x |
1 x < 2 |
|
|
|
|
||||||
|
: |
|
|
|
|
(sin |
n x |
|
n = 1 2 ::: |
1 |
). pOSTRO- |
|
ORTOGONALXNOJ SISTEME FUNKCIJ |
|
2 |
||||||||||
ITX GRAFIK SUMMY POLU^ENNOGO RQDA. |
|
|
|
|||||||||
3. fUNKCI@ |
f(x) = 8 |
;x |
0 < x < 1 |
RAZLOVITX W RQD fURXE |
||||||||
|
< |
2 ; x |
1 x < 4 |
|
|
|
|
|||||
|
: |
|
(cos |
n x |
|
n = 0 1 2 :::1). pOSTROITX |
||||||
PO ORTOGONALXNOJ SISTEME |
|
4 |
||||||||||
GRAFIK SUMMY POLU^ENNOGO RQDA. |
|
|
|
|
|
|
|
|||||
4. fUNKCI@ |
f(x) = 3x ; 1 |
;2 < x < 2 |
PREDSTAWITX TRIGONO- |
|||||||||
METRI^ESKIM RQDOM fURXE W KOMPLEKSNOJ FORME. zAPISATX:
a)SPEKTRALXNU@ FUNKCI@ S(!n),
b)AMPLITUDNYJ SPEKTR A(!n) = jS(!n)j
c)FAZOWYJ SPEKTR '(!n) = arg S(!n).
5. |
fUNKCI@ |
f(x) = e;3jxj x 2 (;1 1) PREDSTAWITX INTEGRA- |
||
LOM fURXE. |
|
|
|
|
6. nAJTI PREOBRAZOWANIE fURXE |
F(!) FUNKCII |
|||
|
|
f(x) = 8 |
2 |
jxj 3 |
|
|
< |
0 |
jxj > 3 |
7. |
|
: |
|
|
|
nAJTI KOSINUS PREOBRAZOWANIE fURXE Fc(!) FUNKCII |
|||
f(x) = 8 ch x 0 < x 1 < 0 x > 1
: 25
zadanie |
N 17 |
|
|
|
|
|
|
|
|
|
|
|
wARIANT 10 |
|||||
|
|
|
|
|
|
kOMPLEKSNYE ^ISLA I FUNKCII |
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
z1 = ;2p |
|
+ 2i |
|
|
|
|
|
||||||||
1. |
dANY ^ISLA |
3 |
z2 = 2 ; 6i: wY^ISLITX: |
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
1 ; z2 4) |
|
z1 z2 |
|
|||||
1) |
2z1 |
; |
3z2 |
|
2) (z2)2 |
3) |
|
z |
||||||||||
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
z2 |
|
|
z1 + z2 |
||||
5) |
q |
|
|
6) |
ln z1 |
7) |
|
cos z2 |
8) |
sh z1: |
||||||||
z1z22 |
|
|||||||||||||||||
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rEZULXTATY WY^ISLENIJ PREDSTAWITX W POKAZATELXNOJ I ALGEBRAI- ^ESKOJ FORMAH.
2. oPREDELITX I POSTROITX NA KOMPLEKSNOJ PLOSKOSTI SEMEJSTWA LINIJ, ZADANNYH URAWNENIQMI
|
|
|
C |
|
|
|
1) |
j z j = |
|
|
2) j z j = C sin(arg z): |
|
arg z |
||||
3. |
rE[ITX URAWNENIQ |
|
|||
|
1) |
cos z ; i sin z = i |
2) z2 ; 2iz + 3 = 0: |
||
4. |
nA KOMPLEKSNOJ PLOSKOSTI ZA[TRIHOWATX OBLASTI, W KOTORYH PRI |
||||
OTOBRAVENII FUNKCIEJ f(z) = (1 + 4i) e;4iz IMEET MESTO
a)SVATIE k 1
b)POWOROT NA UGOL 0 90o.
5.dOKAZATX, ^TO FUNKCIQ u(x : y) = ex sin y+2x MOVET SLUVITX DEJ- STWITELXNOJ ^ASTX@ ANALITI^ESKOJ FUNKCII f(z) = u+iv I NAJTI EE.
6.wY^ISLITX INTEGRALY
|
|
dz |
|
|
|
|
|
|
Z |
|
L : |
j z j = p3 Re z > 0 |
|||
1) |
pz |
GDE |
|||||
|
(L) |
|
|
|
|
|
|
2) |
Z |
(Re z + Im z) dz |
GDE L : OTREZOK [0 1 + 2i]: |
||||
|
(L) |
|
|
|
|
|
|
7. wY^ISLITX, ISPOLXZUQ INTEGRALXNU@ FORMULU kO[I
I |
sh z dz |
|
GDE L : |
||
|
|
|
|||
z(z |
; |
i=2)2 |
|||
(L) |
|
|
|
|
|
|
|
|
|
|
26 |
8 1) jzj = 1
>
< 2) jz ; 2ij = 1
> 3) jzj = 3:
:
zadanie N 18 |
wARIANT 10 |
wY^ETY I IH PRILOVENIQ
1. iSSLEDOWATX NA ABSOL@TNU@ I USLOWNU@ SHODIMOSTX RQD
1 |
|
6 |
|
|
|
X |
|
|
|
|
: |
9n2 |
+ 6ni |
; |
8 |
||
n=1 |
|
|
|
|
|
2. nAJTI I POSTROITX OBLASTX SHODIMOSTI RQDA
1 |
|
z + |
3i |
n |
1 |
|
2 |
|
n |
|
X |
( |
|
) |
+ |
X |
( |
|
|
) : |
|
3 |
z + |
3i |
||||||||
|
|
|||||||||
n=0 |
|
|
|
n=1 |
|
|
||||
|
|
|
|
|
|
|
|
3. nAJTI WSE LORANOWSKIE RAZLOVENIQ DANNOJ FUNKCII PO STEPENQM z ; z0
A) |
13z + 338 |
z0 = 0 |
B) exp ( |
4z ; 2z2 ) z0 = 1: |
|
169z + 13z2 ; 2z3 |
|||||
|
|
|
(z ; 1)2 |
4.dLQ FUNKCII f(z) = z2(cos z ; 1);3 NAJTI IZOLIROWANNYE OSOBYE TO^KI I OPREDELITX IH TIP.
5.dLQ DANNYH FUNKCIJ NAJTI WY^ETY W UKAZANNYH OSOBYH TO^KAH
A) |
|
cos z |
z = 3 =2 |
|
||||||||||||
|
|
|
|
|
|
|
||||||||||
|
z ; 3 =2 |
|
||||||||||||||
W) |
z cos |
z |
|
|
|
|
|
z = 2 |
|
|||||||
z |
2 |
|
||||||||||||||
D) |
|
|
|
|
|
4z +; |
2 |
|
|
|
|
exp |
z |
, |
||
|
(z |
; i)(z + 3) |
z ; 2 |
|||||||||||||
|
z = 1 |
|
|
|
|
|
|
|
|
|||||||
6. wY^ISLITX INTEGRALY |
|
|||||||||||||||
|
|
Z |
|
|
|
|
z |
|
|
|
||||||
A) |
|
|
|
|
|
|
|
dz |
|
|||||||
|
|
|
|
16z16 + 1 |
|
|||||||||||
|
jzj=1 |
|
|
|
|
|
|
|
|
|
|
|
||||
|
1 |
|
|
1 |
|
|
|
|
|
|
|
|
||||
W) Z |
|
|
|
dx |
|
|||||||||||
|
(x2 + 4)3 |
|
||||||||||||||
|
;1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
2 |
|
|
|
1 |
|
|
|
|
|
|
|
|
|||
D) |
|
Z |
|
|
|
|
|
dt |
|
|||||||
|
|
|
||||||||||||||
|
4 sin t + 5 |
|
||||||||||||||
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
B)
G)
E)
B) |
|
e1=(z+1) |
+ |
|
|
z5 |
|
|
z = ;1 |
|||||||
|
|
(z + 1)3 |
||||||||||||||
G) |
|
sin 4z |
; 4z z |
= 0 |
||||||||||||
|
|
|
ez ; 1 ; z |
4 |
|
|||||||||||
E) |
(z + 2)2 ln (1 ; z), |
|||||||||||||||
z = 1. |
|
|
|
|
|
|
|
|
|
|||||||
|
Z |
|
|
|
ch z |
; cos3 z dz |
||||||||||
|
|
|
|
|
z2 sin 5 |
|
|
|
||||||||
jzj=0 1 |
|
|
|
|
|
|
|
|
|
|
|
|||||
1 |
|
|
|
|
sin x |
|
|
|
||||||||
Z |
|
|
|
|
|
|
|
|
|
|
dx |
|||||
|
|
|
x2 |
; |
2x + 2 |
|||||||||||
;1 |
|
|
|
|
|
|
|
|
|
|
|
|
||||
2 |
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
Z |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(p |
|
+ p |
|
cos t)2 |
dt. |
||||||||||
|
6 |
5 |
||||||||||||||
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27
zadanie 19 |
wARIANT 10 |
oPERACIONNYJ METOD
1. |
nAJTI IZOBRAVENIQ SLEDU@]IH FUNKCIJ |
|
|
|
||||||||||||||||
|
|
|
3t |
|
2 |
|
|
|
|
|
|
d |
2 |
sin(t ; 2) (t ; 2)]: |
||||||
|
1) |
f(t) = e |
|
cos |
|
4t: |
3) |
f(t) = |
|
dt |
[t |
|
||||||||
|
|
|
et |
|
1 |
|
|
t |
|
|
|
8 |
0 |
|
|
|
|
t < 0 |
||
|
2) |
f(t) = |
|
;t ; |
|
: |
4) |
f(t) = > |
1 |
(t |
|
2) |
0 |
t < 2 |
||||||
|
|
|
|
|
|
|
|
|
|
|
|
< |
|
; |
t |
2: |
||||
|
|
|
|
|
|
|
|
|
|
|
|
> e; |
|
|
|
|||||
2. |
|
|
|
|
|
|
|
|
|
|
|
: |
|
|
|
|
|
|
|
|
nAJTI ORIGINALY FUNKCIJ PO ZADANNYM IZOBRAVENIQM |
||||||||||||||||||||
1
1) F (p) = p2(p2 ; 1):
p
2) F(p) = p3 ; 1:
3. nAJTI RE[ENIE ZADA^I kO[I OPERACIONNYM METODOM
|
|
1) |
x + 8x = 6et + t |
|
|
|
x(0) = 0: |
|
|
||||||
|
|
2) |
x + x = t et + 4 sin t |
|
|
x(0) = 0 |
x(0) = 0: |
||||||||
|
|
3) |
x + 4x = 4 ; t |
|
|
|
|
x(0) = ;2 |
x(0) = 0: |
||||||
|
|
4) |
4x + x = t2 ; 2t + 1 |
|
|
x(0) = 0 |
x(0) = 0: |
||||||||
4. |
rE[ITX URAWNENIQ, ISPOLXZUQ FORMULU d@AMELQ |
|
|||||||||||||
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
||
1) |
x ; x = |
|
|
|
|
x(0) = 0 |
x(0) = 0: |
|
|
||||||
ch3t |
|
|
|
|
|||||||||||
|
|
|
|
|
8 |
0 |
t |
< |
0 |
|
|
|
|
|
|
2) |
x 36x = |
< |
1 |
0 |
t |
2 |
x(0) = 0 |
x(0) = 0: |
|||||||
|
|
; |
|
|
; |
2 |
2 |
< |
t |
|
4 |
|
|
|
|
|
|
|
|
> |
|
|
|
|
|
||||||
|
|
|
|
|
> 0 |
t |
> |
4 |
|
|
|
|
|
||
|
|
|
|
|
: |
|
|
|
|
|
|
|
|
|
|
5. nAJTI RE[ENIE SISTEM OPERACIONNYM METODOM |
|
|
|||||||||||||
1) |
8 x = 2x ; |
5y |
|
|
x(0) = 6 |
|
2) 8 x = 5x + 2y |
x(0) = 0 |
|||||||
|
< y = x + 6y |
|
|
y(0) = 0: |
|
|
< y = 4x + 3y |
y(0) = 3: |
|||||||
|
: |
|
|
|
|
|
|
|
|
|
|
|
: |
|
|
28
zadanie 20 |
wARIANT 10 |
tEORIQ WEROQTNOSTEJ
1. w BARABANE REWOLXWERA 7 GNEZD. pATRON NAHODITSQ LI[X W ODNOM GNEZDE. bARABAN PROKRU^IWAETSQ SLU^AJNYM OBRAZOM, I ZATEM NAVI- MAETSQ SPUSKOWOJ KR@^OK. nAJTI WEROQTNOSTX SOBYTIJ
1) TRI RAZA PODRQD WYSTRELA NE POSLEDUET
2) WYSTREL PROIZOJDET ROWNO NA 3-EJ POPYTKE.
2. wEROQTNOSTX POQWLENIQ SOBYTIQ W KAVDOM IZ NEZAWISIMYH IS- PYTANIJ RAWNA 0.3. nAJTI NAIMENX[EE ^ISLO ISPYTANIJ n PRI KOTOROM S WEROQTNOSTX@ 0.99 MOVNO OVIDATX, ^TO SOBYTIE POQWITSQ NE MENEE 3 RAZ.
3. iMEETSQ TRI TIPA ODINAKOWYH PO WNE[NEMU WIDU URN S [ARA- MI. w PQTI URNAH PO 3 BELYH I 4 ^ERNYH [ARA, W DWUH URNAH PO 5 BELYH I 7 ^ERNYH [AROW, W TREH URNAH PO 2 BELYH I 6 ^ERNYH [ARA. iZ NAUDA^U WZQTOJ URNY IZWLE^EN ^ERNYJ [AR. kAKOWA WEROQTNOSTX TOGO, ^TO ON IZWLE^EN IZ URNY PERWOGO TIPA?
4. nA KAVDYJ KWADRATNYJ METR ZEMELXNOGO U^ASTKA RAZBRASYWA- ETSQ W SREDNEM PO 500 [TUK SEMQN. kAKOWA WEROQTNOSTX TOGO, ^TO NA NAUGAD WZQTU@ PLO]ADKU W ODIN KWADRATNYJ DECIMETR POPALO NE ME- NEE TREH SEMQN?
5. aPPARATURA SOSTOIT IZ 1000 \LEMENTOW, KAVDYJ IZ KOTORYH NEZA- WISIMO OT OSTALXNYH WYHODIT IZ STROQ ZA WREMQ t S WEROQTNOSTX@ p = 5 10;4 . s^ITAQ ^ISLO OTKAZOW X - SLU^AJNOJ WELI^INOJ, RAS- PREDELENNOJ PO ZAKONU pUASSONA, NAJTI WEROQTNOSTI SOBYTIJ:
a)ZA WREMQ t OTKAVET HOTQ BY ODIN \LEMENT,
b)ZA WREMQ t OTKAVET NE BOLEE 3-H \LEMENTOW.
6.zADANA PLOTNOSTX RASPREDELENIQ NEPRERYWNOJ SLU^AJNOJ
|
|
|
|
8 |
0 |
|
x < 10 |
|
x > 20 |
WELI^INY |
f(x) = |
a |
|
|
|
|
|||
|
|
|
|
> |
|
|
10 x |
|
20 |
|
|
|
|
|
|
||||
|
|
|
|
< x2 |
|
|
|
|
|
1) |
NAJTI POSTOQNNU@ |
a , |
> |
|
|
|
|
|
|
|
|
|
|
: |
|
|
|
|
|
2) |
NAJTI FUNKCI@ RASPREDELENIQ F (x) |
|
|
||||||
3) |
POSTROITX GRAFIKI FUNKCIJ |
F(x) I |
f(x) |
||||||
4) |
WY^ISLITX MATEMATI^ESKOE OVIDANIE M(X) I DISPERSI@ D(X) |
||||||||
5) |
WY^ISLITX WEROQTNOSTX |
P (15 < X < 19): |
|||||||
29
zadanie 21 |
wARIANT 10 |
mATEMATI^ESKAQ STATISTIKA
1. pROWODILSQ PODS^ET KOLI^ESTWA PROEZVA@]IH MIMO POSTA gai W TE^ENII 1-OJ SLU^AJNO WYBRANNOJ MINUTY (SLU^AJNAQ WELI^INA X). tAKIH NABL@DENIJ PROWEDENO 30, REZULXTATY NABL@DENIJ PRIWEDE- NY W TABLICE. sKOLXKO, W SREDNEM, AWTOMOBILEJ PROEDET MIMO POSTA gai ZA SUTKI?
N = 8 |
3 |
2 |
1 |
6 |
7 |
8 |
2 |
6 |
5 |
1 |
8 |
5 |
6 |
9 |
2 |
< |
1 |
4 |
5 |
2 |
8 |
6 |
8 |
1 |
3 |
2 |
9 |
7 |
4 |
7 |
1 |
2. w REZULXTATE: |
PROWEDENNYH SLU^AJNYH IZMERENIJ ABSOL@TNYH ZNA- |
||||||||||||||
^ENIJ TOKA (I a) W \LEKTRI^ESKOJ CEPI POLU^ENY SLEDU@]IE ZNA^E- NIQ:
I = 8 |
2 56 4 21 5 1 5 45 6 26 6 31 6 72 6 71 6 99 7 38 |
|
7 96 8 48 8 56 9 6 9 81 10 55 10 67 11 21 11 27 11 88 |
||
< |
: , - oPREDELITX SREDN@@ MO]NOSTX TOKA W CEPI ESLI EE AKTIWNOE SOPRO
TIWLENIE SOSTAWLQET 5 oM.
3. pO USLOWIQM ZADA^ 1 I 2
A) SOSTAWITX STATISTI^ESKU@ TABLICU RASPREDELENIQ OTNOSITELXNYH ^ASTOT SLU^AJNOJ WELI^INY,
b) POSTROITX POLIGON I GISTOGRAMMU RASPREDELENIQ.
4. dANA STATISTI^ESKAQ TABLICA RASPREDELENIQ ^ASTOT W SLU^AJNOJ WYBORKE.
a)pOSTROITX POLIGON I GISTOGRAMMU RASPREDELENIQ.
b)nAJTI WELI^INY x I s2 WYBORKI.
c)zAPISATX TEORETI^ESKIJ ZAKON RASPREDELENIQ. nAJTI TEORETI- ^ESKIE ZNA^ENIQ WEROQTNOSTEJ I SRAWNITX IH S WELI^INAMI OTNOSITELXNYH ^ASTOT.
d)iSPOLXZOWATX KRITERIJ pIRSONA DLQ USTANOWLENIQ PRAWDOPO- DOBNOSTI WYBRANNOJ GIPOTEZY O ZAKONE RASPREDELENIQ.
1) |
xi |
0 1 2 3 4 5 6 7 8 9 |
|
ni |
15 7 6 8 11 10 11 9 12 11 |
||
|
(ISPOLXZOWATX ZAKON RAWNOMERNOGO RASPREDELENIQ)
30
|
|
2) |
|
xi |
|
0 |
1 2 3 4 5 6 7 8 9 |
|
|||||
|
|
|
ni |
|
3 |
7 10 |
17 |
18 21 |
11 5 |
7 3 |
|
||
|
|
|
|
|
|
|
|||||||
|
|
(ISPOLXZOWATX ZAKON RASPREDELENIQ pUASSONA) |
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
||
3) |
xi |
|
|
[0 2] |
[2 4] |
[4 6] |
[6 8] |
[8 10] |
[10 12] |
[12 14] |
[14 16] |
||
ni |
|
|
1 |
3 |
4 |
7 |
12 |
10 |
8 |
5 |
|||
|
|
|
|||||||||||
(ISPOLXZOWATX ZAKON NORMALXNOGO RASPREDELENIQ)
5. dLQ NORMALXNO RASPREDELENNOJ SLU^AJNOJ WELI^INY (TABL.3, ZA- DA^A 4) OPREDELITX DOWERITELXNYJ INTERWAL, W KOTORYJ S NADEVNOS- TX@ p = 0 95 POPADAET ISTINNOE ZNA^ENIE (MATEMATI^ESKOE OVIDA- NIE) SLU^AJNOJ WELI^INY.
6.nAJTI DOWERITELXNYJ INTERWAL DLQ OCENKI MATEMATI^ESKOGO
OVIDANIQ a NORMALXNOGO RASPREDELENIQ S NADEVNOSTX@ 0:9 ZNAQ WYBORO^NU@ SREDN@@ x = 69:12 OB_EM WYBORKI n = 100 I SRED- NEKWADRATI^ESKOE OTKLONENIE = 10:
7. pO DANNYM KORRELQCIONNOJ TABLICY ZNA^ENIJ xi yi SLU^AJNYH WELI^IN X I Y
a)NANESTI TO^KI (xi yi) NA KOORDINATNU@ PLOSKOSTX, I SOEDINITX IH LOMANOJ,
b)PODOBRATX FUNKCIONALXNU@ ZAWISIMOSTX y = f(x), NAIBOLEE HO- RO[O OPISYWA@]U@ DANNU@ KORRELQCIONNU@. lINEARIZOWATX, ESLI TREBUETSQ, \TU ZAWISIMOSTX, ISPOLXZUQ NOWYE PEREMENNYE,
c)SOSTAWITX URAWNENIE LINII REGRESSII I OPREDELITX KO\FFICI- ENT KORRELQCII. oCENITX TESNOTU SWQZI MEVDU WELI^INAMI X I Y .
1) |
|
xi |
0 |
0,35 |
0,7 |
1,05 |
1,4 |
1,75 |
2,1 |
2,45 |
||
|
yi |
0,8 |
2,15 |
3,49 |
4,94 |
6,15 |
7,52 |
8,96 |
10,26 |
|||
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
2) |
|
xi |
|
5 |
8 |
11 |
14 |
17 |
20 |
23 |
26 |
|
|
yi |
|
0,11 0,55 |
0,95 |
1,15 |
1,30 |
1,50 |
1,60 |
1,75 |
|
||
|
|
|
|
|||||||||
31
