Пример 55. Показать, что
lim ax = 0 (a > 1).
x→−∞
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
|
lim |
ax = |
Замена |
= |
|
|
|
|
x |
|
|
|
x |
|
|
→−∞ |
|
t = |
|
|
|
|
|
− |
|
|
|
|
|
|
|
|
|
= lim a−t
t→+∞
Замечание. Функция f(t) := at, a > 1, бесконечно большая при t → +∞ (см. пример 51). Следовательно, в силу теоремы 29, функция
|
α(t) := |
1 |
|
= |
|
1 |
, a > 1, является бесконечно |
|
f(t) |
at |
|
|
|
|
малой при t → +∞.
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
3.17. Теоремы о пределе функций.
Пусть ϕ, f : A → B, A Rk, B R и пусть ω конечная или бесконечно удалённая предельная точка множества A.
Теорема 30. Пусть lim f(x) = a,
x→ω
Тогда
lim (f(x) + ϕ(x)) = a +
x→ω
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Доказательство.
|
lim f(x) = a |
|
? |
|
x |
|
ω |
|
|
|
|
|
|
|
|
|
→ |
|
|
|
|
|
|
|
= |
|
|
|
|
|
|
|
|
|
|
|
lim ϕ(x) = b |
|
x |
|
ω |
|
|
|
|
|
|
|
|
|
→ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lim (f(x) + ϕ(x)) = a + b Гейне |
x→ω |
|
( (xn), xn A \ {ω}, и xn → ω :
f(xn) + ϕ(xn) → a + b) .
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Фиксируем произвольную (xn), xn A \{ω}, и xn → ω.
|
|
|
|
|
|
Гейне |
|
→ |
|
|
= |
|
lim f(x) = a |
|
|
(f(xn) |
a) |
|
|
|
= |
|
|
12 |
|
x |
|
ω |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Гейне |
|
|
|
|
|
→ |
|
|
|
|
|
|
|
lim ϕ(x) = b |
|
|
(ϕ(xn) |
→ |
b) |
|
|
|
|
|
|
|
= |
|
|
|
|
x |
|
ω |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
→ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(f(xn) + ϕ(xn) → a + b) .
Из выделенного синим цветом следует, по
определению Гейне, что lim (f(x) + ϕ(x)) =
x→ω
a + b.
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Теорема 31. Пусть lim f(x) = a, lim ϕ(x) = b. |
Тогда |
x→ω |
x→ω |
lim f(x)ϕ(x) = ab.
x→ω
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Доказательство.
|
lim f(x) = a |
|
? |
|
x |
|
ω |
|
|
|
|
|
|
|
|
|
→ |
|
|
|
|
|
|
|
= |
|
|
|
|
|
|
|
|
|
|
|
lim ϕ(x) = b |
|
x |
|
ω |
|
|
|
|
|
|
|
|
|
→ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lim f(x)ϕ(x) = ab Гейне |
x→ω |
|
( (xn), xn A \ {ω}, и xn → ω :
f(xn) · ϕ(xn) → a · b) .
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Фиксируем произвольную (xn), xn A \{ω}, и xn → ω.
(f(xn) |
→ |
a) |
|
= |
|
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(ϕ(xn) |
→ |
b) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(f(xn) · ϕ(xn) → a · b) .
Из выделенного синим цветом следует,
определению Гейне, что lim (f(x)ϕ(x))
x→ω
ab.
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Теорема 32. Пусть
|
lim f(x) = a, lim ϕ(x) = b, |
|
x→ω |
x→ω |
|
причём b 6= 0. Тогда |
f(x) |
|
a |
|
|
lim |
= |
. |
|
|
|
|
x→ω ϕ(x) |
|
b |
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit
Доказательство.
|
|
lim f(x) = a |
|
? |
|
|
|
|
f(x) |
|
|
a Гейне |
|
|
|
x |
|
ω |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
= |
|
|
lim |
|
|
= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ϕ(x) |
b |
|
|
lim ϕ(x) = b |
|
|
|
|
|
|
|
|
|
|
→ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ω |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x |
→ |
|
|
|
|
|
|
|
|
|
|
|
|
x |
|
ω |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
→ |
|
|
|
|
|
|
|
|
|
|
|
|
|
f(xn) |
a |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
, и xn |
→ |
|
|
|
|
|
|
→ b |
|
|
|
|
A |
\ { |
|
ϕ(xn) |
|
|
(xn), xn |
|
|
|
ω |
|
|
ω : |
|
|
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit