Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МОЗ-11,23 2 сем 2014-2015 / Математика Анисимова Т.А 1 часть / высшая математика для экономистов 1 курсы.doc
Скачиваний:
330
Добавлен:
10.05.2015
Размер:
17.42 Mб
Скачать

Непосредственное интегрирование (метод разложения)

С помощью свойств неопределенного интеграла и таблицы интегралов от элементарных функций становится возможным отыскание первообразных для несложных алгебраических выражений. Например,

.

В большинстве случае для приведения к табличным интегралам необходимо выполнить предварительное преобразование подынтегрального выражения:

.

Метод замены переменной

Если подынтегральное выражение является достаточно сложным, то привести его к табличному виду часто удается одним из основных методов интегрирования - методом замены переменной (или методом подстановки). Основная идея метода состоит в том, что в выражениевместо переменнойx вводится вспомогательная переменная u, связанная с х известной зависимостью . Тогда подынтегральное выражение преобразуется к новому виду, т.е. имеем

.

Здесь, по правилу дифференцирования сложной функции, =.

Если, после такого преобразования, интеграл является табличным или значительно проще исходного, то замена переменной достигла своей цели.

Пример:

К сожалению, нельзя указать общих правил выбора "удачной" подстановки: такой выбор зависит от структуры конкретного подынтегрального выражения. В разделе 9.12 приводятся примеры, поясняющие различные способы выбора подстановки в ряде частных случаев.

Метод интегрирования по частям

Следующим основным общим методом является интегрирование по частям. Пусть u=u(х) и v=v(x) - дифференцируемые функции. Для произведения этих функций имеем, по свойству дифференциала:

d(uv) = v du + u dv или u dv = d(uv) - v du.

Интегрируя левую и правую части последнего равенства и учитывая свойство 3 неопределенного интеграла, получаем

Эта формула называется формулой интегрирования по частям для неопределенного интеграла. Для ее применения фиксируется разбиение подынтегрального выражения на два сомножителя и и dv. При переходе к правой части формулы первый из них дифференцируется (при нахождении дифференциала: du=u'dx), второй интегрируется: . Такой прием приводит к цели, еслиинтегрируется легче, чем. Пример:

Иногда для получения результата формулу интегрирования по частям приходится применять несколько раз. Отметим, что при промежуточном вычислении можно не дописывать произвольную постояннуюC; легко убедиться, что в ходе решения она уничтожится.

Интегрирование рациональных дробей

Если подынтегральная функция представляет собой алгебраическую дробь, то на практике достаточно часто встречаются два типовых случая:

1.Степень числителя дроби больше или равна степени знаменателя (неправильная дробь). Для такой дроби можно разделить числитель на знаменатель известным из школьного курса методом деления углом (иначе – выделение целой части), после чего выполнить интегрирование. Пример:

.

Здесь использовалась и замена переменной:

.

Для промежуточного расчет произвольную С можно не указывать, но в окончательном ответе она обязательна.

2. Метод неопределенных коэффициентов. Если дробь – правильная и знаменатель разлагается на множители, то этот метод позволяет представить подынтегральную функцию суммой простых дробей, проинтегрировать которые уже несложно. Метод имеет большое значение не только в интегрировании. Покажем его суть на примере вычисления интеграла.

Разложив знаменатель дроби на множители, имеем: . Введем теперьпредположение, что эту дробь можно представить суммой простых дробей:

Здесь А и В – неизвестные коэффициенты, которые следует найти (неопределенные коэффициенты). Для этого приведем правую часть равенства к общему знаменателю:

Сократив знаменатели и раскрыв скобки, получим

Теперь используем теорему: чтобы два алгебраических выражения были тождественно равны, необходимо и достаточно равенство их соответственных коэффициентов. Таким образом, получим систему из двух уравнений и решим ее:

.

Следовательно,

.

Возвращаясь к задаче интегрирования, получим

.