
- •1. Эконометрическая модель и проблемы эконометрического моделирования
- •1.1. Общие понятия
- •1.2. Экономическая модель
- •1.3. Эконометрическая модель
- •1.4. Элементы эконометрической модели и их свойства
- •1.5. Задачи эконометрики
- •1.6. Эконометрика и её место в ряду математических и экономических дисциплин
- •1.7. Резюме по теме.
- •1.8. Вопросы для повторения
- •2. Элементы теории вероятностей и математической статистики
- •2.1. Дискретные, непрерывные случайные величины
- •2.2. Зависимые случайные величины
- •2.3. Понятия генеральной совокупности и выборки (выборочной совокупности)
- •2.4. Оценки параметров генеральной совокупности. Несмещённость и состоятельность оценок
- •2.5. Резюме по теме
- •2.6. Вопросы для повторения
- •3. Модели и методы регрессионного анализа
- •3.1. Основные понятия регрессионного анализа
- •3.2. Линейная парная регрессия
- •3.2.1. Определения
- •3.2.2. Принцип, метод наименьших квадратов
- •3.2.3. Свойства оценок параметров парной линейной регрессии
- •3.2.4. Анализ статистической значимости коэффициентов линейной регрессии
- •3.3. Нелинейная регрессия
- •3.4. Характеристики парной регрессии
- •3.5. Множественная регрессия
- •3.6. Гомо- и гетероскедастичность остатков
- •Методы определения гетероскедастичности
- •Тест ранговой корреляции Спирмена
- •3.7. Резюме по теме.
- •3.8. Вопросы для повторения
- •4. Анализ временных рядов
- •4.1. Общие понятия
- •4.2. Понятие временного ряда
- •4.3. Основные понятия и модели анализа временных рядов
- •4.4. Трендовые модели генерации значений временного ряда.
- •4.5. Фильтрация и сглаживание временного ряда
- •4.5.1. Медианная фильтрация (сглаживание)
- •Проверка гипотезы о наличии тренда во временном ряде
- •4.6. Методы сглаживания временного ряда
- •4.6.1. Общие понятия
- •4.6.2. Аналитические методы
- •4.6.3. Метод скользящего среднего
- •4.6.4. Метод экспоненциально взвешенного скользящего среднего (метод Брауна)
- •4.7. Стационарные временные ряды
- •4.7.1. Основные понятия
- •4.7.2. Корреляционная функция
- •4.7.3. Использование автокорреляции для выявления структуры временного ряда
- •4.8. Модели авторегрессии стационарных временных рядов и их идентификация
- •4.8.1. Основные понятия
- •4.8.2. Модель авторегрессии 1-го порядка
- •4.8.3. Модель авторегрессии второго порядка
- •4.8.4. Оценивание параметров моделей авторегрессии. Метод инструментальных переменных.
- •4.9. Моделирование сезонных и циклических колебаний
- •4.9.1. Расчет сезонной компоненты и построение модели временного ряда
- •4.9.2. Использование сезонных фиктивных компонент при моделировании сезонных колебаний
- •4.10. Специфика изучения взаимосвязей по временным рядам. Исключение сезонных колебаний. Исключение тенденции.
- •4.10.1. Метод отклонений от тренда
- •4.10.2. Метод последовательных разностей
- •4.11. Резюме по теме.
- •4.12. Вопросы для повторения
- •5. Системы одновременных уравнений
- •5.1. Модель спроса и предложения
- •5.2. Структурная и приведённая форма системы
- •5.3. Идентифицируемость систем одновременных уравнений
- •5.4. Резюме по теме.
- •5.5. Вопросы для повторения
- •Задачник
- •Примеры решения типовых задач
- •Задачи для самостоятельного решения
- •Варианты задач
- •Нелинейные модели регрессии и их линеаризация
- •Решение типовых задач
- •Задачи для самостоятельного решения.
- •Варианты задач
- •Решение типовых задач.
- •Постановка задачи
- •Варианты для самостоятельного решения.
2.3. Понятия генеральной совокупности и выборки (выборочной совокупности)
В основе математической статистики лежат понятия генеральной совокупности и выборки (выборочной совокупности).
Под генеральной совокупностью мы подразумеваем все возможные наблюдения интересующего нас показателя, все исходы случайного испытания или всю совокупность реализаций случайной величины X. Пример генеральной совокупности - данные о доходах всех жителей какой-либо страны, о результатах голосования населения по какому-либо вопросу и т.д. Однако в большинстве случаев мы имеем дело только с частью возможных наблюдений, взятых из генеральной совокупности, и называем это множество (точнее подмножество) значений выборкой. Таким образом, выборка - это множество наблюдений, составляющих лишь часть генеральной совокупности. Выборка объема п - это результат наблюдения случайной величины в вероятностном эксперименте, который повторяется п раз в одних и тех же условиях (которые могут контролироваться), а следовательно, и при неизменном распределении случайной величины X. Процесс, который приводит к получению выборочных данных, называют выборочным исследованием.
Мы обычно говорим о генеральной совокупности, когда используем определенные теоретические модели, но на практике в нашем распоряжении имеются лишь выборочные данные, и поэтому мы можем строить оценки теоретических характеристик, основываясь лишь на данных выборочных наблюдений. Целью математической статистики является получение выводов о параметрах, виде распределения и других свойствах случайных величин (генеральной совокупности) по конечной совокупности наблюдений - выборке.
Выборку называют репрезентативной (представительной), если она достаточно полно представляет изучаемые признаки и параметры генеральной совокупности.
2.4. Оценки параметров генеральной совокупности. Несмещённость и состоятельность оценок
Изучение всей генеральной совокупности во многих случаях либо невозможно, либо нецелесообразно в виду больших материальных затрат, уничтожения или порчи исследуемых объектов. Например, анализ среднего дохода населения Белгорода формально предполагает наличие достоверной информации о каждом жителе города в конкретный момент времени. Получение такой информации просто невозможно. Проверка качества обуви связана с воздействием на нее различных экстремальных факторов: растяжения, сжатия, влажности, температуры, солнечных лучей, химического воздействия, что приводит к потере товарного вида исследуемой обуви. Поэтому на практике вся генеральная совокупность практически никогда не анализируется. Для осуществления выводов о генеральной совокупности чаще всего используется выборка ограниченного объема. В силу этого задача математической статистики состоит в исследовании свойств выборки и обобщения этих свойств на генеральную совокупность. Полученный при этом вывод называется статистическим.
Информация о генеральной совокупности, полученная на основании выборочного наблюдения, обычно обладает некоторой погрешностью, так как она основывается на изучении только части элементов выборки. Так, вряд ли средний доход и разброс в доходах, полученные по выборке объема n=1000, будут в точности такие же, что и аналогичные показатели, рассчитанные на основании данных обо всех жителях города. Это определяет две проблемы, составляющие содержание математической теории выборки:
Как организовать выборочное наблюдение, чтобы полученная информация достаточно полно отражала пропорции генеральной совокупности (проблема репрезентативности выборки);
Как использовать результаты выборки для суждения по ним с наибольшей надежностью о свойствах и параметрах генеральной совокупности (проблема оценки).