
- •Тепловое проектирование радиоэлектронных средств
- •Введение
- •1. Влияние тепла и влаги на рэс и их элементы
- •1.1. Влияние температуры
- •1.2. Влияние влаги
- •2. Основы теплообмена
- •2.1. Теплообмен конвекцией
- •2.1.1. Основные положения
- •2.1.2. Теплообмен при естественной конвекции
- •2.1.2.1. Коэффициент теплоотдачи неограниченных цилиндров
- •2.1.2.2. Коэффициент теплоотдачи плоской (цилиндрической) поверхности
- •2.1.2.3. Коэффициент теплопередачи между двумя поверхностями
- •2.1.2.3.1. Коэффициент теплопередачи плоских неограниченных прослоек
- •2.1.2.3.2. Коэффициент теплопередачи ограниченных прослоек
- •2.1.3. Теплообмен при вынужденном движении жидкости
- •2.1.3.1. Коэффициент теплоотдачи при движении жидкости вдоль плоской поверхности
- •2.1.3.2. Коэффициент теплоотдачи при движении жидкости в трубах
- •2.1.3.3. Определяющий размер тел, принудительно омываемых потоком жидкости
- •2.2. Лучистый теплообмен (теплообмен излучением)
- •2.2.1. Основные понятия и определения
- •2.2.2. Законы теплового излучения
- •2.2.3. Лучистый теплообмен между телами
- •2.2.3.1. Лучистый теплообмен неограниченных поверхностей
- •2.2.3.2. Теплообмен излучением ограниченных поверхностей
- •2.2.3.4. Влияние экранов на теплообмен излучением
- •2.3. Теплообмен кондукцией (теплопроводностью)
- •2.3.1. Основные понятия. Закон Фурье
- •2.3.2. Уравнение теплопроводности Фурье
- •2.3.3. Тепловой поток через стенки
- •2.3.3.1. Плоская стенка
- •2.3.3.2. Цилиндрическая стенка
- •2.3.4. Температурное поле тел с внутренними источниками тепла
- •2.3.4.1. Плоская неограниченная стенка
- •2.3.4.2. Параллелепипед
- •3. Сложный теплообмен
- •3.1. Тепловой поток через стенки, разделяющие две среды
- •3.2. Тепловой поток в стержнях и пластинах
- •3.2.1.Тепловой поток в стержнях
- •3.2.2. Тепловой поток в пластинах
- •3.2.2.1. Пластина в виде диска
- •3.2.2.2. Прямоугольная пластина
- •3.3. Особенности теплообмена в условиях невесомости и пониженного атмосферного давления
- •4. Основные закономерности стационарных температурных полей
- •4.1. Принцип суперпозиции температурных полей
- •4.2. Температурный фон
- •4.3. Принцип местного влияния
- •4.4. Тепловые модели радиоэлектронных средств
- •4.5. Тепловые схемы системы тел
- •5. Анализ и расчет стационарных тепловых режимов рэс
- •5.1. Расчет теплового режима рэс в герметичном кожухе с крупными деталями на шасси
- •5.1.1. Расчет среднеповерхностной температуры кожуха
- •5.1.2. Расчет среднеповерхностной температуры нагретой зоны
- •5.2. Расчет теплового режима рэс с внутренней принудительной циркуляцией воздуха
- •5.3. Расчет теплового режима рэс кассетной конструкции
- •5.3.1. Расчет теплового режима рэс кассетной конструкции (группа а)
- •5.3.2. Расчет теплового режима рэс с воздушными зазорами между кассетами (группа б)
- •5.4. Расчет теплового режима вентилируемых рэс
- •6. Расчет нестационарных тепловых процессов
- •6.1. Охлаждение (нагревание) тел и системы тел без источников тепла
- •6.2. Охлаждение (нагревание) тел и системы тел c источниками энергии
- •6.3. Длительность начальной стадии
- •7. Системы обеспечения тепловыхрежимов рэс
- •7.1. Классификация сотр
- •7.2. Системы охлаждения рэс
- •7.2.1. Воздушные системы охлаждения рэс
- •7.2.2. Жидкостные системы охлаждения рэс
- •7.2.3. Испарительные системы охлаждения рэс
- •7.2.4. Кондуктивные системы охлаждения рэс
- •7.2.5. Основные элементы систем охлаждения рэс
- •7.2.5.1. Теплоносители
- •7.2.5.2. Теплообменники
- •7.2.5.3. Вентиляторы и насосы систем охлаждения
- •8. Специальные устройства охлаждения рэс
- •8.1. Тепловые трубы
- •8.2. Вихревые трубы
- •8.3. Турбохолодильники
- •8.4. Термоэлектрические охлаждающие устройства
- •9. Интенсификация теплообмена в рэс. Радиаторы и их расчет
- •9.1. Особенности теплообмена оребренных поверхностей
- •9.2. Рекомендации по конструированию радиаторов
- •9.3. Проектирование и расчет радиаторов
- •10. Теплообмен при кипении жидкостей и конденсации паров
- •10.1. Теплообмен при кипении жидкости
- •10.2. Теплообмен при конденсации паров
- •11. Влагообмен в рэс
- •11.1. Механизм поглощения влаги материалами
- •11.2. Основные закономерности переноса паров воды через полимерные материалы
4.2. Температурный фон
В работе [2] рассматривается несколько отличный способ описания температурного поля системы тел. Выражение принципа суперпозиции температурных полей представляется в виде
,
(4.2.1)
где
- мощность источника энергии, действующая
в рассматриваемом
-
ом теле;
- тепловой коэффициент собственно
-го
тела, который зависит от условий его
теплообмена с окружающими телами и
средой.
Второе слагаемое в формуле (4.2.1) определяет
перегрев
-го
тела за счёт собственных источников
тепла и называется собственным перегревом
.
(4.2.2)
Это перегрев, который имело бы тело, если бы был включен только собственный источник, а все остальные выключены.
Сумма произведений
определяет перегрев, возникающий в
-ом
теле за счет источников тепла всех
других тел системы, кроме
-го
тела, и называется наведенным перегревом
.
(4.2.3)
Сумма температуры среды и наведенного
перегрева называется температурным
фоном
-го
тела
(4.2.4)
Температура
-го
тела через температурный фон будет
определяться выражением
.
(4.2.5)
Выражение температурного фона (4.2.5) можно представить в несколько другой форме
,
(4.2.6)
причем
- тепловой коэффициент фона данной
-ой
точки, а
.
Для каждого тела системы
и
будут различны, при этом
определяется
пространственным положением и условиями
теплообмена рассматриваемого тела в
системе тел. Следовательно, температурный
фон каждого тела системы имеет свою
величину.
При исследовании теплового режима РЭС, в зависимости от поставленной задачи, рассматривается температурный фон элемента в субблоке, субблока в блоке и, наконец, блока в аппарате.
4.3. Принцип местного влияния
При исследовании температурного РЭС учет условий теплообмена на границах всех тел, составляющих аппарат, может сделать задачу очень сложной и практически невыполнимой. В большинстве случаев нет необходимости знать температуру во всех точках аппарата, а достаточно рассчитать ее значение в наиболее характерных областях.
В этом случае при анализе температурного поля используется принцип местного влияния, который формулируется следующим образом: любое местное возмущение температурного поля является локальным и не распространяется на удаленные участки поля.
Это значит, что детали различной конфигурации, рассеивающие одинаковую мощность, на некотором удалении будут вызывать одну и ту же температуру, что и точечный источник той же мощности. Аналогично, группа деталей, установленных на шасси, вызовет такое же повышение температуры в отдельных участках шасси, как и равномерно распределенный по этому шасси источник энергии той же мощности. При этом, как в первом, так и во втором случае, температурное поле вблизи деталей будет сильно зависеть от размеров и конфигурации их.
Экспериментально установлено, что конфигурация области, занимаемая источником энергии, практически не влияет на характер температурного поля на расстоянии от центра этой области того же порядка, что и наибольший размер области [2].
Принцип местного влияния и принцип суперпозиции температурных полей позволяют при анализе теплового режима аппаратов заменять области, занятые источниками энергии (ЭРЭ) некоторой нагретой зоной, температурный фон в любой точке которой не зависит от формы и от размеров удаленных от этой точки деталей, способа монтажа и распределения мощности в них.