
- •1.1. Что такое программа и как она выглядит?
- •1.2. Комментарии
- •1.3. Зарезервированные слова и типы данных
- •1.4. Объявление переменных
- •1.5. Операции и выражения
- •1.6. Ввод и вывод
- •1.7. Переменные и константы
- •1.8 Логические операторы
- •1.9. Управляющие операторы
- •1.10. Операторы циклов
- •1.11. Операторы перехода
- •2. Функции
- •2.1. Передача параметров
- •2.2. Библиотечные функции
- •2.3. Локальные и глобальные переменные
- •Объявления функций
- •Время жизни и область видимости программных объектов
- •Int local_var; /* по умолчанию auto */
- •2.4. Перегрузка
- •Виртуальный метод
- •3. Массивы
- •Перечисления
- •Объединения
- •858993459 //Результат будет неопределенным,
- •Множества
- •4. Структуры
- •Int numberPeriod; //число переодов начисления процентов
- •Int page; //Количество страниц
- •Void print(); /*Внимание, записывается только прототип функции */
- •Int yearBorn; //год рождения
- •Int yearBorn; //год рождения
- •4.1. Демонстрационные программы
- •Int done;/*переменная, которая информирует о конце списка файлов */
- •6. Объединения
- •Info;//Обявление переменной типа объединение
- •Info;//Обявление переменной типа объединение
- •7. Объектно-ориентированное программирование
- •7.1. Классы и объекты
- •Демонстрационные программы
- •Результат работы программы
- •7.2. Конструкторы и деструкторы
- •Конструктор копирования
- •Конструктор копирования
- •7.5. Наследование
- •7.3. Создание объектов и обращение к членам объекта
- •8. Абстрактные типы данных
- •9. Пространство имен
- •Void greeting();/*это пространство имен содержит функцию с тем же
- •Void big_greeting(); /*эта функция не попадает ни в одно из созданных подпространств,т.Е. Принадлежит пространству имен std */
- •//Определение функций
- •Void big_greeting() /* определение данной функции не принадлежит ни одному из созданных пространств имен, следовательно дальнейший код помещается в глобальное пространство имен */
- •10. Строки
- •4.3 Демонстрационные программы
- •4.10. Класс string
- •Класс AnsiString
- •Класс AnsiString
- •Класс Set
- •4.9. Перегрузка операторов
- •Использование "умных" указателей
- •4.8. Полиморфизм
- •Главное меню — компонент MainMenu
- •Диалоги
- •Файлы и потоки
- •Ввод-вывод в файл
- •Ifstream inStream; //Объявление входного потока
- •InStream.Open("character.Dat"); /*присоединение файла к входному потоку */
- •InStream.Close(); //закрытие входного потока
- •If(!out){ //при неудачной попытке
- •If(in.Fail()){ //поток не создан, то сообщение и выход
- •Управление потоком ввода-вывода
- •Дополнительные возможности cin и cout
- •Что внутри iostream.H
- •Использование cout
- •Использование символа-заполнителя
- •Управление цифрами значений с плавающей точкой
- •Вывод и ввод одного символа за один раз
- •Чтение ввода с клавиатуры по одному символу за раз
- •Чтение с клавиатуры целой строки
- •Что вам необходимо знать
- •5.2. Ввод имен файлов
- •5.3. Манипуляторы
- •5. Указатели
- •5.1.Типы указателей и операции с указателями
- •Адресная арифметика
- •Сравнение указателей
- •Преобразование типа указателя
- •Указатель void
- •5.2. Динамические массивы
- •Int array[10]; //объявляется массив с именем array
- •Int a[10]; //объявляется массив с именем a
- •Int *array1; //указатель типа int с именем array1
- •Int *array[5];/*массив с именем array, его элементы указатели*/
- •Int (*point)[4][5]; /*объявление указателя на двумерный массив без имени */
- •Использование указателей в функциях и указатели на функции
- •Указатель классов
- •Шаблоны
- •Шаблоны функций
- •Void Swap (t& X, t& y) /* к моменту обращения тип т будет известен и заменен, например, на int */
- •Void sort(t array[], int maxIndex){ /*передали массив и его размер */
- •6.2. Шаблоны классов
- •6.3 Демонстрационные программы
- •7.1 Обработка исключений
- •Исключения и их стандартная обработка
- •Базовый класс исключений vcl Exception
- •Упражнения
- •Обработка исключительных ситуаций, возбуждаемых оператором new
- •Исходные файлы и объявление переменных
- •Связанные списки
- •Void newHead(PtrNode& head, //адрес головного узла
- •Void newHead(PtrNode& head, //адрес головного узла
- •Поиск в связанных списках
- •Void newHead(PtrNode& head, //адрес головного узла
- •Директивы препроцессора.
- •Структура файла проекта
- •Структура make-файла
- •Структура модуля
- •Структура h-файла
- •Файл формы
- •Особенности программирования под Windows.
- •Создание окон.
- •Функция WinMain
- •Создание проекта Win32Application.
- •Библиотека mfc.
- •Создаем код
- •Шпаргалка
- •Структура файла проекта
- •Структура make-файла
- •Структура модуля
- •Структура h-файла
- •Файл формы
- •Файл проекта
- •Введение
- •Свойства компонентов
- •События
- •Менеджер проектов
- •Пример: создание простейшего приложения
- •Графика Внедрение картинок
- •Редактор изображений
- •Классы для хранения графических объектов.
- •If (SelectDirectory( //Компонент библиотеки
- •Методы создания собственной графики. Рисование по пикселам
- •Int px, py; //координаты пикселей
- •Рисование с помощью пера
- •Int px, py; //координаты пикселей
- •Рисование кистью
- •Мультимедиа и анимация Общие сведения о звуковых и видеофайлах
- •Способы воспроизведения звуков
- •Создание мультфильма
- •Воспроизведение немых видео клипов — компонент Animate
- •Проигрыватель MediaPlayer
- •Процессы, потоки, распределенные приложения
- •If include "uOverlayl.H" // включение головного файла приложения
- •Функция CrateProcess
- •Заключение
- •Что такое ansi?
- •Почему вместо русских букв в консольном приложении выводится мусор? Автор: Алексей Кирюшкин Версия текста: 1.0
- •Выход 1
- •Выход 2
- •Выход 3
- •Выход 4
- •Ввод-вывод файлов
- •Выбор компонентов для групповых операций
- •Установка разделяемых свойств компонентов
- •Изменение размера компонентов
- •Выравнивание компонентов
- •Пример: Создание текстового редактора Проектирование формы приложения
- •Создание обработчиков событий
- •Создание меню
Виртуальный метод
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 16 мая 2012; проверки требуют 7 правок.
Виртуальный метод (виртуальная функция) — в объектно-ориентированном программировании метод (функция) класса, который может быть переопределён в классах-наследниках так, что конкретная реализация метода для вызова будет определяться во время исполнения. Таким образом, программисту необязательно знать точный тип объекта для работы с ним через виртуальные методы: достаточно лишь знать, что объект принадлежит классу или наследнику класса, в котором метод объявлен.
Виртуальные методы — один из важнейших приёмов реализации полиморфизма. Они позволяют создавать общий код, который может работать как с объектами базового класса, так и с объектами любого его класса-наследника. При этом базовый класс определяет способ работы с объектами и любые его наследники могут предоставлять конкретную реализацию этого способа. В некоторых языках программирования, например в Java, нет понятия виртуального метода, данное понятие следует применять лишь для языков, в которых методы родительского класса не могут быть переопределены по умолчанию, а только с помощью некоторых вспомогательных ключевых слов. В некоторых же (как, например, в Python), все методы — виртуальные.
Базовый класс может и не предоставлять реализации виртуального метода, а только декларировать его существование. Такие методы без реализации называются «чистыми виртуальными» (перевод англ. pure virtual) или абстрактными. Класс, содержащий хотя бы один такой метод, тоже будет абстрактным. Объект такого класса создать нельзя (в некоторых языках допускается, но вызов абстрактного метода приведёт к ошибке). Наследники абстрактного класса должны предоставить реализацию для всех его абстрактных методов, иначе они, в свою очередь, будут абстрактными классами.
Для каждого класса, имеющего хотя бы один виртуальный метод, создаётся таблица виртуальных методов. Каждый объект хранит указатель на таблицу своего класса. Для вызова виртуального метода используется такой механизм: из объекта берётся указатель на соответствующую таблицу виртуальных методов, а из неё, по фиксированному смещению, — указатель на реализацию метода, используемого для данного класса. При использовании множественного наследования или интерфейсовситуация несколько усложняется за счёт того, что таблица виртуальных методов становится нелинейной.
Пример на C++, иллюстрирующий отличие виртуальных функций от невиртуальных:
class Ancestor
{
public:
virtual void function1 () { cout << "Ancestor::function1()" << endl; }
void function2 () { cout << "Ancestor::function2()" << endl; }
};
class Descendant : public Ancestor
{
public:
virtual void function1 () { cout << "Descendant::function1()" << endl; }
void function2 () { cout << "Descendant::function2()" << endl; }
};
Descendant* pointer = new Descendant ();
Ancestor* pointer_copy = pointer;
pointer->function1 ();
pointer->function2 ();
pointer_copy->function1 ();
pointer_copy->function2 ();
В этом примере класс Ancestor определяет две функции, одну из них виртуальную, другую — нет. Класс Descendantпереопределяет обе функции. Однако, казалось бы одинаковое обращение к функциям даёт разные результаты. На выводе программа даст следующее:
Descendant::function1()
Descendant::function2()
Descendant::function1()
Ancestor::function2()
То есть, в случае виртуальной функции, для определения реализации функции используется информация о типе объекта и вызывается «правильная» реализация, независимо от типа указателя. При вызове невиртуальной функции, компиляторруководствуется типом указателя или ссылки, поэтому вызываются две разные реализации function2(), несмотря на то, что используется один и тот же объект.
Следует отметить, что в С++ можно, при необходимости, указать конкретную реализацию виртуальной функции, фактически вызывая её невиртуально:
pointer->Ancestor::function1 ();
для нашего примера выведет Ancestor::function1(), игнорируя тип объекта.