
- •11. Интеллектуальные задачи в экономике
- •11.1. Экономика в Искусственном Интеллекте
- •11.2. Нечёткая логика
- •Математический аппарат
- •Нечёткий логический вывод
- •Интеграция с интеллектуальными парадигмами
- •Нечёткие нейронные сети
- •Адаптивные нечёткие системы
- •Нечёткие запросы
- •Нечёткие ассоциативные правила
- •Нечёткие когнитивные карты
- •Нечёткая кластеризация
- •11.3. Нейронные сети в экономике
- •Параллели из биологии
- •Базовая искусственная модель
- •Применение нейронных сетей
- •Сбор данных для нейронной сети
- •Пре/пост процессирование
- •Многослойный персептрон (mlp)
- •Обучение многослойного персептрона
- •Алгоритм обратного распространения
- •Переобучение и обобщение
- •Другие алгоритмы обучения многослойного персептрона
- •Радиальная базисная функция
- •Вероятностная нейронная сеть
- •Обобщённо-регрессионная нейронная сеть
- •Линейная сеть
- •Сеть Кохонена
- •11.4. Генетические алгоритмы в экономике
- •Основные понятия генетических алгоритмов
- •Классический генетический алгоритм
- •Оператор скрещивания
- •11.5. Экспертные системы, их структура и применение в экономике
- •11.5.1. Общая характеристика, принципы, алгоритмы
- •Продукционные системы
- •Rete – алгоритм
- •Пример разработки экспертной системы
- •Преимущества экспертных систем
- •11.5.2.Особенности экспертных систем экономического анализа*
- •11.5.3. Экспертная система анализа финансового состояния предприятия
- •11.5.4. Экспертная система анализа эффективности результатов финансово-хозяйственной деятельности предприятия
- •Контрольные вопросы и упражнения
- •Заключение
Нечёткий логический вывод
Основой для проведения операции нечёткого логического вывода является база правил, содержащая нечёткие высказывания в форме "Если - то" и функции принадлежности для соответствующих лингвистических термов. При этом должны соблюдаться следующие условия:
Существует хотя бы одно правило для каждого лингвистического терма выходной переменной.
Для любого терма входной переменной имеется хотя бы одно правило, в котором этот терм используется в качестве предпосылки (левая часть правила).
В противном случае имеет место неполная база нечётких правил.
Пусть в базе правил имеется m правил вида:
. . .
. . .
где
–
входные переменные; y – выходная
переменная;
–
заданные нечёткие множества с функциями
принадлежности.
Результатом
нечёткого вывода является чёткое
значение переменной y* на основе заданных
чётких значений
.
В общем случае механизм логического вывода включает четыре этапа: введение нечёткости (фазификация), нечёткий вывод, композиция и приведение к чёткости, или дефазификация (рис.11.5).
Рис. 11.5. Система нечёткого логического вывода
Алгоритмы нечёткого вывода различаются главным образом видом используемых правил, логических операций и разновидностью метода дефазификации. Разработаны модели нечёткого вывода Мамдани, Сугено, Ларсена, Цукамото.
Рассмотрим подробнее нечёткий вывод на примере механизма Мамдани (Mamdani). Это наиболее распространённый способ логического вывода в нечётких системах. В нём используется минимаксная композиция нечётких множеств. Данный механизм включает в себя следующую последовательность действий.
Процедура фазификации: определяются степени истинности, т.е. значения функций принадлежности для левых частей каждого правила (предпосылок). Для базы правил с m правилами обозначим степени истинности как
.
Нечёткий вывод. Сначала определяются уровни "отсечения" для левой части каждого из правил:
Далее находятся "усечённые" функции принадлежности:
Композиция, или объединение полученных усечённых функций, для чего используется максимальная композиция нечётких множеств:
, где MF(y) –функция принадлежности итогового нечёткого множества.
Дефазификация, или приведение к чёткости. Существует несколько методов дефазификации. Например, метод среднего центра, или центроидный метод:
Геометрический смысл такого значения – центр тяжести для кривой MF(y). Рис.11.6 графически показывает процесс нечёткого вывода по Мамдани для двух входных переменных и двух нечётких правил R1 и R2.
Рис. 11.6. Схема нечёткого вывода по Мамдани
Интеграция с интеллектуальными парадигмами
Гибридизация методов интеллектуальной обработки информации – девиз, под которым прошли 90-е годы у западных и американских исследователей. В результате объединения нескольких технологий искусственного интеллекта появился специальный термин – "мягкие вычисления" (soft computing), который ввел Л. Заде в 1994 году. В настоящее время мягкие вычисления объединяют такие области как: нечёткая логика, искусственные нейронные сети, вероятностные рассуждения и эволюционные алгоритмы. Они дополняют друг друга и используются в различных комбинациях для создания гибридных интеллектуальных систем.
Влияние нечёткой логики оказалось, пожалуй, самым обширным. Подобно тому, как нечёткие множества расширили рамки классической математическую теорию множеств, нечёткая логика "вторглась" практически в большинство методов Data Mining, наделив их новой функциональностью. Ниже приводятся наиболее интересные примеры таких объединений.