Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
79
Добавлен:
10.05.2015
Размер:
17.52 Mб
Скачать

FGUP “State Research Institute

of Aviation Systems” (GosNIIAS)

Development of Applied Computer

Vision Systems Using Projective

Morphologies and Evidence-Based

Image Analysis

Yury V. Vizilter

viz@gosniias.ru

FGUP “State Research Institute of

Aviation Systems” (GosNIIAS)

Leading Russian organization in the field of avionics for flight vehicles of civil and military aviation founded in 1946

26 Doctors of Sciences, 232 Candidates of Sciences

Educational faculties of MFTI, MAI, MIREA

“Technical Vision” laboratories:

 

 

Computer and Machine Vision Laboratory

 

 

Laboratory for Close-range Digital Photogrammetry

 

 

Laboratory for Long-range Digital Photogrammetry

www.gosniias.ru

 

Laboratory for Optic and Electronic Systems

About 60 developers (engineers and software engineers)

4 Doctors of Science, 8 Candidates of Sciences

More than 300 scientific publications in related area

JSC “Institute of Information Technologies”:

MHTML-документ

More information about commercial products and projects:

 

www.iitvision.ru

 

Visual Data Representation and Processing

Levels

Models

 

Problems

Frameworks

Low

Image =

1.

Image Filtering

 

combination of

2.

Image Matching

 

 

pixels

 

 

 

 

 

1.

Image

Projective

 

Image =

Segmentation

Morphologies

Mid

combination of

(Feature Extraction,

(Morphological

primitives (regions,

Image Modeling)

Systems)

 

features, figures,

2.

Inage Matching

 

 

etc.)

(Image-to-Image

 

 

 

Model Matching)

 

 

 

1.

Scene

Photogrammetry

 

Scene =

Segmentation

Evidence-Based

 

combination of

2.

Object detection

High

objects (2D, 2.5D,

(Image-to-Object

Image Analysis

 

3D, etc.)

Model Matching)

 

 

 

3.

Object

Machine Learning

 

 

recognition

 

Visual Data Representation and Processing

Levels

Models

 

Problems

Low

Image =

1.

Image Filtering

combination of

2.

Image Matching

 

pixels

 

 

 

 

1.

Image

 

Image =

Segmentation

Mid

combination of

(Feature Extraction,

primitives (regions,

Image Modeling)

 

features, figures,

2.

Inage Matching

 

etc.)

(Image-to-Image

 

 

Model Matching)

 

 

1.

Scene

 

Scene =

Segmentation

High

combination of

2.

Object detection

objects (2D, 2.5D,

(Image-to-Object

 

3D, etc.)

Model Matching)

 

 

3.

Object

 

 

recognition

Framework

Morphological

Evidence

Analysis

(engineer-oriented technique for design of

CV applications)

Two Vision Frameworks Presented

Vision Framework is a regular scheme for design of vision algorithms. It’s a special way for thinking about images and tasks.

Projective Morphology scheme is developed based on Serra’s Mathematical Morphology, Pavel’s Shape Theory and Pytiev’s Morphological Analysis.

This morphological framework utilizes the structural image modeling with regularization constrains and decides some image segmentation and image comparison problems.

Evidence-Based Image Analysis scheme evolves the voting techniques proposed by Hough, Ballard and Davies.

Ii is a voting scheme with the use of simple low-level image events, high- or mid-level parameterized object hypotheses and reasonably sophisticated analysis of voting results.

It provides the creation of robust and computationally effective model-based object detection procedures.

PROJECTIVE MORPHOLOGIES

MM 1. Математическая морфология Серра

 

Обработка с учетом формы, выделение деталей

A

MIN

MAX

эрозия

дилатация

 

 

реконструкция A

 

MAX

MIN

 

эрозия

 

дилатация

 

 

Serra J. Image Analysis and

Mathematical Morphology.

Academic Press. London, 1982.

MM 1. Математическая морфология Серра

Структурирующий элемент ИсходныйТрансляциобраз

я

TBT

B

Базовые операции

ММ Сжатие

A B

A B

A

Расширение A B

A

Морфологические фильтры как комбинация базовых

Открытие:

операторов

XB = (X B) B

Закрытие: X●B = (X B) B

MM 1. Математическая морфология Серра

Морфологические фильтры как комбинация

структурирующих элементов

Structuring Elements (“Struxel”) Исходное изображение

T BT B

Трансляция Форма = Комбинация “Struxels”

XoB = {BT | BT X}

Открытие Opening

Закрытие Closing

MM 1. Математическая морфология Серра

ММ-фильтры = Проекция на Форму

Учет формы путем выбора структурирующих элементов:

ММ-операторы: ММ-проекторы:

Эрозия (сжатие)

ММ-открытие

Дилатация (расширение) ММ-закрытие

Морфологические фильтры как комбинация сегментации и