
- •«Обработка изображений и распознавание образов» Визильтер Юрий Валентинович Методическое пособие-2010
- •Раздел 2. Распознавание образов. 165
- •1.1. Задачи и приложения машинного зрения. Примеры практических приложений.
- •Уровни и методы машинного зрения
- •Растровое изображение Изображение как двумерный массив данных
- •Алгебраические операции над изображениями
- •Физическая природа изображений
- •Изображения различных диапазонов длин волн
- •Изображения различной физической природы
- •Тип пикселя
- •Возможности и особенности системыPisoft
- •Базовые средства просмотра и анализа изображений и видеопоследовательностей
- •Алгебра изображений
- •Геометрические преобразования изображений
- •Устройства оцифровки и ввода изображений
- •Линейки и матрицы, сканеры и камеры
- •Геометрия изображения
- •Цифровые и аналоговые устройства
- •Пространственное разрешение
- •Программное обеспечение
- •Обработка цветных изображений
- •Цветовая модельRgb
- •Цветовая модель hsv
- •Цветовая модель yuv
- •Цветовая сегментация изображения
- •Гистограмма и гистограммная обработка изображений
- •Профиль вдоль линии и анализ профиля
- •Проекция и анализ проекции
- •Бинаризация полутоновых изображений
- •Сегментация многомодальных изображений
- •Выделение и описание областей
- •Выделение связных областей на бинарных изображениях
- •1. Отслеживающие алгоритмы на примере алгоритма обхода контура.
- •2. Сканируюющие алгоритмы.
- •1.3. Фильтрация. Выделение объектов при помощи фильтров
- •Оконная фильтрация изображений в пространственной области
- •Фильтрация бинарных изображений Модель шума «соль и перец»
- •Структура оконного фильтра
- •Логическая фильтрация помех
- •Бинарная медианная фильтрация
- •Бинарная ранговая фильтрация
- •Взвешенные ранговые фильтры
- •Анизотропная фильтрация
- •Расширение-сжатие (простая морфология)
- •Стирание бахромы
- •Нелинейная фильтрация полутоновых изображений
- •Ранговая оконная фильтрация
- •Минимаксная фильтрация
- •Задача выделения объектов интереса
- •Бинарные фильтры для выделения объектов
- •Метод нормализации фона
- •Скользящее среднее в окне
- •Гауссовская фильтрация
- •Преобразование Фурье. Линейная фильтрация в частотной области
- •Преобразование Фурье
- •Комплексное представление преобразования Фурье
- •Быстрое преобразование Фурье
- •Двумерное преобразование Фурье
- •Свертка с использованием преобразования Фурье
- •Фильтрация изображений в частотной области
- •Вейвлет-анализ
- •Пирамида изображений
- •Вейвлет-преобразование
- •Операторы вычисления производных
- •Операторы вычисления векторов градиентов
- •Операторы Марра и Лапласа
- •Постобработка контурного изображения Локализация края
- •Утончение контура
- •Сегментация полутоновых изображений
- •Пороговая и мультипороговая сегментация
- •Методы слияния, разбиения и слияния/разбиения областей
- •Способы описания выделенных областей
- •Текстурные признаки
- •1.6.Морфологические методы анализа сцен (по ю.П. Пытьеву) Методы обнаружения объектов, заданных эталонами
- •Согласованная фильтрация.
- •Корреляционное обнаружение.
- •Морфологический подход ю.П. Пытьева.
- •Форма изображения как инвариант преобразований изображений, отвечающих вариациям условий регистрации
- •Сравнение изображений по форме
- •Выделение отличий изображений по форме
- •Обнаружение объекта по его изображению и оценка его координат
- •*Морфология на базе кусочно-линейной интерполяции
- •Преобразование Хафа для поиска прямых
- •*Различные способы параметризации прямых
- •Преобразование Хафа для поиска окружностей
- •Анализ аккумулятора при поиске геометрических примитивов
- •Обобщенное преобразование Хафа
- •*Специализированная процедура голосования для поиска эллипсов
- •*Рекуррентное преобразование Хафа в скользящем окне
- •1.8.Математическая морфология (по ж. Серра)
- •Морфологические операции на бинарных изображениях
- •Морфологические операции на полутоновых изображениях
- •Морфологическое выделение «черт» и объектов
- •Морфологический спектр
- •Морфологические скелеты. Непрерывная бинарная морфология Непрерывная бинарная морфология
- •Непрерывное гранично-скелетное представление изображения
- •Обработка и использование скелета
- •*Обобщенные скелетные представления бинарных фигур
- •Алгоритмы утончения дискретного бинарного изображения
- •*Регуляризация скелетов
- •Типы нерегулярностей скелета
- •Устранение нерегулярностей
- •Регуляризация скелета по Тихонову
- •*Селективные морфологии
- •1.9. Анализ движения. Выделение движущихся объектов. Разность кадров. Вычитание фона. Анализ оптических потоков. Слежение за движущимися объектами. Корреляционное слежение.
- •Обучение с учителем. Детерминированные методы, основанные на «близости». Линейные решающие правила. Метод построения эталонов. Метод ближайшего соседа. Методkближайших соседей.
- •Линейные решающие правила
- •Метод построения эталонов
- •Методы ближайших соседей
- •Параметрические и непараметрические методы
- •Дискриминантные и моделирующие методы обучения
- •Способность распознавателя к обобщению. Регуляризация.
- •Байесовская теория решений. Случай двух классов. Классификаторы, разделяющие функции и поверхности решений. Вероятности ошибок. Разделяющие функции для случая нормальной плотности.
- •Дискриминантный анализ. Линейный дискриминант Фишера. Персептронная функция критерия. Линейный дискриминантный анализ (lda,дискриминант Фишера)
- •Персептрон Розенблатта
- •Анализ свидетельств
- •Байесовское объединение свидетельств
- •Структурное распознавание
- •Автоматизированное конструирование алгоритмов обнаружения объектов на основе преобразований модельных описаний объектов.
- •Нейросетевое распознавание
- •Нейронные сети ассоциативной памяти. Сети Хопфилда.
- •Многослойные персептроны. Оптимизационное обучение. Метод обратного распространения ошибки.
- •Многослойные персептроны. Правило Хебба.
- •*Связь с байесовским распознаванием
- •Сети встречного распространения. Самоорганизующиеся сети.
1.8.Математическая морфология (по ж. Серра)
Пусть дано евклидово пространство EN, на множестве объектов (подмножеств) которого введены отношения включения (Ì), объединения (È) и пересечения (Ç). Рассмотрим некоторое преобразованиеY: EN®EN(операторY).
Оператор Yназываетсяувеличивающим(increasing), если
(XÌY)Þ(Y(X)ÌY(Y)), X,YÌEN,
то есть оператор сохраняет отношение принадлежности.
Оператор Yназываетсядилатацией(расширением), если
Y(Uxi) = UY(xi), "xiÌEN,
то есть оператор сохраняет объединение.
Аналогично, оператор, сохраняющий пересечение, называется эрозией(сжатием), если
Y(Çxi) = Ç(Y(xi)), "xiÌEN.
Оператор называется экстенсивным, еслиY(X)ÊX иантиэкстенсивным, если
Y(X)ÍX.
При рассмотрении последовательного применения операторов вводятся понятия:
усиливающийоператор (Y(Y(X))ÊY(X));
ослабляющийоператор (Y(Y(X))ÍY(X));
равносильныйоператор (Y(Y(X)) =Y(X)).
Морфологическими фильтрами называется множество операторов, являющихся одновременно равносильными и увеличивающими [240].
Морфологические операции на бинарных изображениях
Классическое описание операций бинарной математической морфологии было дано в терминах теории множеств, оперирующей такими понятиями как объединение множеств, пересечение множеств и отношение включения. При этом бинарные изображения рассматриваются непосредственно как множества пикселей (Рис. 6.1.1.).
@Рис. 6.1.1. Базовые понятия теории множеств применительно к бинарным фигурам.
Определим трансляцию множества AÌE по zÎE как преобразование (Рис. 6.1.2.)
Az = {y| aÎA, y=a=z}.
Пусть даны A,BÌE. Операция
AB = {a=b| aÎA, bÎB} = U{Ba} = U{Ab}
называется сложением Минковского. Операция
AB= {z|BzÍA} =U{Az}
называется вычитанием Минковского.
Множество B будем в дальнейшем называть структурирующим элементом B. Так как операции, определяемые этими выражениями удовлетворяют требованиям сохранения соответственно объединения и пересечения бинарных образов, то они называются также дилатацией (расширением)иэрозией(сжатием)изображения X структурирующим элементом B (по структурирующему элементу B) и являются базовыми операциями ММ (рис. 6.1.2).
@Рис. 6.1.2.. Базовые операции бинарной математической морфологии.
Эти операции являются двойственными по отношению друг к другу в том смысле что:
XB = (XСBV)С,
где XС – дополнение к X, а BV = {–b| bÎB}.
Следовательно, все положения или теоремы, доказанные относительно одной из операций автоматически могут быть представлены в двойственной форме относительно другой операции.
Фундаментальный результат, полученный Матероном (теорема Матерона), состоит в том, что любой увеличивающий оператор Y, инвариантный относительно трансляции, может быть представлен в виде объединения эрозий:
,
где k(Y) – ядроY(X), то есть такое множество структурирующих элементов B, чтоY(B) содержит начало координат.
Этот результат также имеет двойственную форму:
,
где Y*(X) = (Y(XC))C.
Именно в силу теоремы Матерона эрозия и дилатация являются базовыми операциями ММ, то есть любой морфологический фильтр может быть представлен в виде объединения эрозий или пересечения дилатаций.
Введем, наконец, операции открытияизакрытия, часто используемые в морфологии. Операция
X◦B= (XB)B(6.1.1)
называется открытием X по B и имеет ясный физический смысл:
X◦Bс = U{Bz| BzÍX}.
Этот оператор является антиэкстенсивным и увеличивающим.
Закрытием X по B называется
X·B = (XB)B. (6.1.2)
Этот оператор является экстенсивным и увеличивающим.
Кроме того, оба эти оператора являются равносильными, а, следовательно, открытие и закрытие – это два простейших морфологических фильтра (рис. 6.1.3).
@Рис. 6.1.3. Простейшие фильтры в бинарной математической морфологии.
Рассмотрим геометрический смысл операторов математической морфологии на примере обработки искусственного изображения (рис. 6.1.4), который мы уже рассматривали ранее в разделе, посвященном бинарной фильтрации. На изображении представлен прямоугольный объект, имеющий «дефекты формы» типа внутренних «дырок» и внешних «выступов». Попробуем морфологическими средствами удалить эти дефекты формы объекта.
@Рис. 6.1.4. Изображение с «дефектами» типа «дырок» и «выступов»
Поскольку объект имеет прямоугольную форму, будем использовать структурирующий элемент также прямоугольной формы. Габаритные размеры структурирующего элемента должны быть не меньше, чем характерный «поперечный» размер (минимальная хорда) дефектов формы, подлежащих удалению.
Начнем с удаления внешних «выступов» формы. Для этого используется процедура открытия. На первом этапе этой процедуры выполняется операция сжатия (эрозии) объекта, которая удаляет («съедает») внешние «выступы» формы. Однако внешний размер объекта при этом уменьшается, а внутренние дефекты, напротив, увеличиваются в размерах, в связи с чем после сжатия необходимо выполнить расширение (дилатацию) объекта с тем же структурирующим элементом. В результате выполнения всей операции открытия в целом внешние размеры и форма объекта оказываются восстановлены, но внутренние дефекты формы сохраняются (рис. 6.1.5, 6.1.6).
@Рис. 6.1.5. Результат сжатия (эрозии) @Рис. 6.1.6. Результат открытия объекта объекта (удаление внешних «выступов» формы)
Рассмотрим теперь морфологическую технику удаления внутренних дефектов формы («дырок»). Для этого используется процедура закрытия. На первом этапе этой процедуры выполняется операция расширения (дилатации) объекта, которая удаляет («заращивает») внутренние «дыры» и «каналы». Однако внешний размер объекта при этом увеличивается, внешние дефекты, также увеличиваются в размерах, в связи с чем после расширения необходимо выполнить сжатие (эрозию) объекта с тем же структурирующим элементом. В результате выполнения всей операции закрытия в целом размеры и внутренняя целостность объекта оказываются восстановлены, но внешние дефекты формы сохраняются (рис. 6.1.7, 6.1.8).
@Рис. 6.1.7. Результат расширения @Рис. 6.1.8. Результат закрытия (дилатация) объекта объекта (удаление внутренних «дырок» формы)
Для того чтобы устранить и внешние и внутренние дефекты формы в данном примере необходимо сначала применить к исходному изображению (рис. 6.1.4) открытие, а затем к результату открытия – закрытие с тем же прямоугольным структурирующим элементом (рис. 6.1.9, 6.1.10).
@Рис. 6.1.9. Результат открытия @Рис. 6.1.10. Результат закрытия после открытия (полное восстановление формы)
Как видно из примера (рис. 6.1.9, 6.1.10), последовательная комбинация открытия и закрытия обеспечила полное восстановление формы исходной геометрической фигуры.
В заключение данного раздела рассмотрим особенности морфологической фильтрации изображений с круглым (дисковым) структурирующим элементом. На рис. 6.1.11 – 6.1.13 приведен результат открытия прямоугольного объекта круглым структурирующим элементом. Результат сравнения (вычитания) изображений показывает, что в результате открытия форма объекта была специфическим образом искажена – углы прямоугольника оказались скругленными с радиусом закругления, равным радиусу структурирующего элемента.
@Рис. 6.1.11. Исходный @Рис. 6.1.12. Результат @Рис. 6.1.13. Разность
объект открытия (фильтрация изображений
с круглой маской: эффект
округления углов)
Данный эффект естественным образом следует из геометрического смысла операции открытия: результат открытия представляет собой объединение всех структурирующих элементов, целиком помещающихся внутри исходного объекта. Легко увидеть, что именно в углы прямоугольника дисковый структурирующий элемент никак не может поместиться целиком. В силу этого границу объекта после открытия (закрытия) иногда удобно представлять как кривую, полученную путем «качения» структурирующего элемента по внутренней (внешней) границе исходного объекта (см. также рис. 6.1.3).