
- •Минобрнауки россии Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования
- •Оглавление
- •Введение
- •1 Основные рекомендации по оформлению чертежа
- •1.1 Инструмент и материал
- •1.2 Форматы
- •1.3 Масштабы
- •1.4 Линии
- •1.5 Шрифты чертежные
- •1.6 Основная надпись
- •1.6.1 Порядок выполнения основной надписи
- •1.6.2 Порядок заполнения основной надписи
- •2 Геометрические построения
- •2.1 Построение перпендикулярных и параллельных прямых
- •2.1.1 Построение перпендикулярных прямых
- •2.1.2 Построение параллельных прямых
- •2.2 Деление отрезка прямой
- •2.2.1 Деление отрезка прямой на равные части
- •2.2.2 Деление отрезка прямой на пропорциональные части
- •2.3 Построение и измерение углов, деление углов, построение уклонов
- •2.3.1 Построение и измерение углов
- •2.3.2 Деление углов
- •2.4 Деление окружности на равные части, построение правильных многоугольников
- •2.4.1 Деление окружности на равные части и построение правильных вписанных многоугольников
- •2.4.2 Построение правильных многоугольников по данной стороне
- •2.4.3 Построение правильных многоугольников, описанных около окружности
- •Остальные вершины c и f определяют с помощью дуги окружности радиуса oa, которая проводится до пересечения ее с продолжением вертикального диаметра заданной окружности.
- •3.1 Общие положения
- •3.2 Построение касательных и касание окружностей
- •3.2.1 Построение касательной к окружности
- •3.2.2 Касание окружностей
- •3.2.3 Построение касательных к двум окружностям
- •3.3 Сопряжения с помощью дуги окружности
- •3.3.1 Сопряжение двух прямых дугой окружности
- •3.3.2 Сопряжение дуги и прямой дугой окружности заданного радиуса
- •3.3.3 Сопряжение двух дуг дугой окружности заданного радиуса
- •3.3.4 Вычерчивание контуров деталей
- •3.3.5 Архитектурные обломы
- •4 Плоские кривые
- •4.1 Циркульные кривые
- •4.1.1 Завитки
- •4.1.2 Коробовые кривые
- •4.2 Лекальные кривые
- •4.2.1 Порядок вычерчивания лекальных кривых
- •4.2.2 Способы построения некоторых лекальных кривых
- •5. Нанесение размеров
- •5.1 Правила и рекомендации при простановке размеров
- •6 Аксонометрические проекции
- •6.1 Общие положения
- •6.2 Прямоугольные проекции
- •6.3 Косоугольные проекции
- •6.4 Условности и нанесение размеров
- •7 Геометрические тела
- •7.1 Понятие о простейших геометрических телах
- •7.1.1 Многогранники
- •7.1.2 Тела вращения
- •7.2 Комплексные чертежи группы геометрических тел
- •8 Технический рисунок
- •8.1 Методы оттенений
- •8.1.1 Общие понятия
- •8.1.2 Штриховка
- •8.1.3 Шраффировка
- •8.1.4 Оттенение точками
- •8.2 Рисование группы геометрических тел с оттенением
- •8.3 Отмывка чертежей
- •8.3.1 Общие положения акварельной окраски
- •9 Порядок выполнения графических работ
- •9.1 Требования к оформлению задания
- •9.1.1 Графическая работа – шрифт чертежный
- •9.1.2 Графическая работа – деление окружности на равные части
- •9.1.3 Графическая работа – лекальные кривые
- •9.1.4 Графическая работа – сопряжение
- •9.1.5 Графическая работа – комплексный чертеж группы геометрических тел
- •9.1.6 Графическая работа – технический рисунок группы геометрических тел
- •Приложение г Графическая работа – сопряжение
- •Приложение д Графическая работа – Комплексный чертеж группы геометрических тел
- •Приложение е Графическая работа – Технический рисунок группы геометрических тел
- •Список использованных источников
3.2.3 Построение касательных к двум окружностям
При вычерчивании контуров предметов сравнительно часто приходится строить общие касательные к двум дугам окружностей. Общая касательная к двум окружностям может быть внешней, если обе окружности расположены с одной стороны от нее, и внутренней, если окружности расположены с разных сторон касательной.
Построение общей внешней касательной к двум окружностям радиусами R и r (рисунок 47). Из центра окружности большего радиуса – точкиO1 описывают окружность радиусомR – r(рисунок 47, а). Находят середину отрезкаO2O1 – точкуO3и из нее проводят вспомогательную окружность радиусомO3O2 илиO3O1.Обе проведенные окружности пересекаются в точкахA иВ. ТочкиO1 иB соединяют прямой и в пересечении ее с окружностью радиусомR определяют точку касанияD (рисунок 47, б). Из точкиO2параллельно прямойO1D проводят линию до пересечения с окружностью радиусомrи получают вторую точку касанияC. ПрямаяCDявляется искомой касательной. Так же строится вторая общая внешняя касательная к этим окружностям (прямаяEF).
а б
Рисунок 47
Построение общей внутренней касательной к двум окружностями радиусов R и r (рисунок 48). Из центра любой окружности, например: точкиO1, описывают окружность радиусомR +r (рисунок 48, а). Разделив отрезокO2O1 пополам, получают точкуO3. Из точкиO3как из центра описывают вторую вспомогательную окружность радиусомO3O2 = O3О1 и отмечают точки A и В пересечения вспомогательных окружностей. Соединив прямой точки A и O1 (рисунок 48, б), в пересечении ее с окружностью радиуса R получают точку касания D. Через центр окружности радиуса r проводят прямую, параллельную прямой O1D, и в пересечении ее с заданной окружностью определяют вторую точку касания С. Прямая CD – внутренняя касательная к заданным окружностям. Аналогично строится и вторая касательная EF.
а б
Рисунок 48
3.3 Сопряжения с помощью дуги окружности
3.3.1 Сопряжение двух прямых дугой окружности
Все задачи на сопряжение дугой могут быть сведены к двум видам. Сопряжение осуществляется либо заданным радиусом сопрягающей дуги, либо через точку, заданную на одной из сопрягаемых линий. В том и другом случаях необходимо построить центр сопрягающей дуги.
Сопряжение двух пересекающихся прямых дугой заданным радиусом Rc (рисунок 49, а). Так как сопрягающая дуга должна касаться заданных прямых, то центр ее должен быть удален от каждой прямой на величину равную радиусуRc. Сопряжение строят так. Проводят две прямые, параллельные заданным и удаленные от них на величину радиусаRcи в пересечении этих прямых отмечают точкуO – центр сопрягающей дуги. Из точкиОопускают перпендикуляр на каждую из заданных прямых. Основания перпендикуляров – точкиA иB – являются точками касания сопрягающей дуги. Такое построение сопряжения справедливо для двух пересекающихся прямых, составляющих любой угол. Для сопряжения сторон прямого угла можно воспользоваться также способом, указанным на рисунке 49, б.
а б
Рисунок 49
Сопряжение двух пересекающихся прямых, на одной из которых задана точка касания А сопрягающей дуги (рисунок 50). Известно, что геометрическим местом центров дуг, сопрягающих две пересекающиеся прямые, является биссектриса угла, образованного этими прямыми. Поэтому, построив биссектрису угла, из точки касанияA восстанавливают перпендикуляр к прямой до пересечения его с биссектрисой и отмечают точку O – центр сопрягающей дуги. Опустив из точки О перпендикуляр на другую прямую, получают вторую точку касания В и радиусом Rc= OA = OB осуществляют сопряжение двух прямых, на одной из которых была задана точка касания.
Сопряжение
двух параллельных прямых дугой, проходящей
через заданную точку касания А (рисунок
51). Из точкиA
восставляют перпендикуляр к заданным
прямым и на пересечении его со второй
прямой отмечают точкуB.
ОтрезокAB делят
пополам и получают точкуО–
центр сопрягающей дуги радиусом.
Рисунок 50 Рисунок 51