
- •Сборник тестовых заданий по медицинской физике с решениями
- •Введение в теорию вероятности. Механика. Колебания и волны. Акустика. Звук
- •Тестовые задачи первого уровня
- •1.3. Тестовые задачи третьего уровня
- •1.3.1. Элементы теории вероятностей
- •1.3.2. Случайные величины
- •1.3.3. Элементы математической статистики
- •Выборочное среднее квадратическое отклонение
- •Точность интервальной оценки по малой выборке
- •1.3.4. Проверка статистических гипотез
- •Примеры использования статистических критериев.
- •1.3.5. Кинематика поступательного движения материальной точки
- •1.3.6. Кинематика вращательного движения вокруг неподвижной оси
- •1.3.7. Основное уравнение динамики поступательного движения материальной точки. Импульс. Закон сохранения импульса
- •1.3.8. Динамика вращательного движения твердого тела
- •1.3.9. Полная механическая энергия тела. Законы сохранения и изменения энергии
- •1.3.10. Колебания
- •1.3.11. Акустика. Физические характеристики звука. Характеристики слухового ощущения
- •Физические характеристики звука:
- •1.3.12. Механические волны. Плоская волна
- •Длиной волны называется расстояние, на которое перемещается ее фронт за время равное периоду колебаний частиц среды:
- •1.3.13. Эффект Доплера
- •1.1. Выберите правильный ответ:
- •2.1. Выберите правильный ответ:
- •3.1. Выберите правильный ответ:
- •4.1. Выберите правильный ответ:
- •5.1. Выберите правильный ответ:
- •6.1. Выберите правильный ответ:
- •2. Электричество
- •2.1. Тестовые задачи первого уровня
- •2.3. Тестовые задачи третьего уровня
- •2.3.1. Принцип суперпозиции для вектора напряженности электрического поля
- •2.3.2. Принцип суперпозиции для потенциала электростатического поля
- •2.3.3. Работа силы Кулона
- •2.3.4. Связь вектора напряженности электрического поля и потенциала
- •2.3.5. Диполь в электрическом поле
- •2.3.6. Ёмкость. Конденсаторы
- •2.3.7. Законы постоянного тока
- •2.3.8. Биоэлектрические потенциалы
- •3. Магнетизм и электромагнетизм. Электромагнитные колебания
- •3.1. Тестовые задачи первого уровня
- •3.2. Тестовые задачи второго уровня
- •3.3. Тестовые задачи третьего уровня
- •3.3.1. Принцип суперпозиции магнитного поля
- •3.3.2. Силы Ампера и Лоренца
- •3.3.3. Электромагнитная индукция. Эдс индукции и самоиндукции
- •3.3.4. Электрические колебания
- •3.3.5. Медицинская электроника
- •Количественным показателем надежности является также
- •Знак «–» взят потому, что dN 0, так как число работающих изделий убывает со временем.
- •Вариант 1
- •2.1. Выберите правильный ответ:
- •3.1. Выберите правильный ответ:
- •4.3. Выберите правильный ответ:
- •5.1. Выберите правильный ответ:
- •5.2. Выберите правильный ответ:
- •5.3.Выберите правильный ответ:
- •5.4. Выберите правильный ответ:
- •Ответы к тестам
- •4. Оптика
- •4.1. Тестовые задачи первого уровня
- •7. Схема медицинского сахариметра
- •Название элементов
- •8. Недостатки оптической Типы линз для
- •4.3. Тестовые задачи третьего уровня
- •4.3.1. Интерференция
- •Если оптическая разность хода когерентных волн, пришедших от таких источников, равна нечетному числу длин полуволн
- •4.3.2. Дифракция
- •4.3.3. Поляризация электромагнитных волн. Оптически активные среды
- •4.3.4. Геометрическая оптика. Разрешающая сила оптических систем
- •Найти: г.
- •4.3.5. Поглощение света. Закон Бугера-Ламберта. Люминесценция
- •5. Физика атомов и молекул. Ионизирующее излучение и основы дозиметрии
- •5.1. Тестовые задачи первого уровня
- •7. Области спектра Фотобиологическое
- •5.3. Тестовые задачи третьего уровня
- •5.3.1. Тепловое излучение
- •5.3.2. Волны де Бройля
- •5.3.3. Фотоны. Энергия фотонов
- •5.3.4. Электронный парамагнитный резонанс
- •5.3.5. Ионизирующее излучение. Дозиметрия
- •Ответ: телом животного поглощено 1012 электронов.
- •2.1. Укажите формулу Бугера-Ламберта:
- •2.2. Абсолютно черным телом называется
- •2.3. Укажите формулу, выражающую длину волны де Бройля:
- •3.1. На какую глубину проникает в биологические ткани бета-излучение?
- •3.2. Укажите формулу, выражающую условие возникновения электронного парамагнитного резонанса
- •3.3. Предел разрешения электронного микроскопа порядка
- •3.4. Что называется плоскостью поляризации света?
- •4.3. В каких системных и внесистемных единицах измеряется экспозиционная доза?
- •4.4. От какого из перечисленных видов излучения труднее всего защититься?
- •5.1. В интерферометре Майкельсона одно из зеркал передвинули вдоль луча на расстояние /2. На сколько изменилась при этом оптическая разность хода интерферирующих лучей?
- •5.2. Укажите формулу дифракционных минимумов при дифракции света на узкой щели:
- •5.3. В световодах волокно с показателем преломления n1 покрыто веществом с показателем n2. Укажите правильное соотношение между n1 и n2.
- •5.4. Зависит ли угол поворота плоскости поляризации оптически активным веществом от длины волны плоскополяризованого света?
Найти: г.
Решение. Построим в микроскопе изображение предмета АВ, который обычно помещают вблизи фокальной плоскости объектива. Для этого возьмем два луча, исходящих из точки А предмета АВ (см. рис. ниже). Первый луч, проходящий через фокус F1 объектива, после преломления в линзе пойдет параллельно главной оптической оси до падения на окуляр в точке D. После преломления в окуляре луч пройдет через его фокус F2. Второй луч, падающий на оптический центр О1 объектива, не изменит своего направления и упадет на окуляр в точке Е. Чтобы найти ход луча после преломления в окуляре, проведем через точку F2 фокальную плоскость MN и побочную оптическую ось, параллельную этому лучу и пересекающую фокальную плоскость в точке К. Тогда второй луч после преломления в окуляре также пройдет через эту точку.
M
A
B2
B1
O2
F2
B
F1
O1
A1
D
K
A2 E N
Точка А2 пересечения продолжений первого и второго лучей, вышедших из окуляра, является мнимым изображением точки А. Опуская из точки А2 перпендикуляр на главную оптическую ось, получим мнимое, увеличенное и перевернутое изображение А2В2 предмета АВ.
Поскольку микроскоп состоит из двух линз (объектив и окуляр), то увеличение микроскопа определяется формулой (4.3.22):
Г = Г1Г2, (4.3.28)
где Г1 – увеличение объектива, Г2 – увеличение окуляра. По определению, увеличение объектива (см. (4.3.21))
Г1 = f1/d1. (4.3.29)
Так как f1 l, d1 F1, то Г1 l/F1.
Окуляр действует как лупа, поэтому
Г2 = L/F2, (4.3.30)
где L – расстояние наилучшего зрения, L = 0,25 м (для нормального глаза).
Подставив выражения (4.3.29) и (4.3.30) в (4.3.28), получим
Г = lL/F1F2 = 562.
Ответ: Г = 562.
Пример 12. Разрешающая способность светового микроскопа с иммерсионным объективом равна 6000 мм-1. Чему равен апертурный угол, если в качестве иммерсионной жидкости использован глицерин (n = 1,47), а длина волны света, освещающая препарат, составляет 446 нм?
Дано: Z = 6000 мм-1,
n = 1,47,
= 446 нм = 44610-9м.
Найти: u/2.
Решение. Для того чтобы найти апертурный угол, используем формулу (4.3.23):
Z,
откуда выразим сначала синус апертурного угла, а потом и сам угол:
sin(u/2) = 0,5/(nZ) u/2 = arcsin[(0,5/(nZ)] = 65,5.
Ответ: u/2 = 65,5.
Пример 13. На дифракционную решетку шириной 5 мм нанесено 2000 штрихов. а) Определить наибольшую разрешающую способность решетки для света с длиной волны 546 нм. б) Чему равна угловая дисперсия этой решетки в спектре второго порядка для света с длиной волны 700 нм?
Дано: l = 5 мм = 510-3 м,
N = 2000,
= 546 нм = 54610-9 м.
Найти: а) (/)макс; б) D.
Решение. а) Определим наибольшую разрешающую способность решетки для света с длиной волны 546 нм. Для этого используем исходные формулы (4.3.25) и (4.3.8) и учтем, что sinмакс = 1:
/ = kN, (/)макс = kмаксN
dsin = k, dsinмакс = kмакс, откуда d= kмакс,
Из (4.3.9) найдем
d = l/N, поэтому kмакс = d/ = l/N = 4,58 = 4,
а наибольшая разрешающая способность равна соответственно
(/)макс = 4N = 42000 = 8000.
б) Теперь найдем, чему равна угловая дисперсия этой дифракционной решетки в спектре второго порядка для длины волны 700 нм.
Запишем исходную формулу для угловой дисперсии (4.3.24) и формулу (4.3.8) для главных максимумов дифракции:
D = k/(dcos), dsin = k.
Из (4.3.8) находим, чему равен угол дифракции :
sin = k/d = 0,56 = arcsin(0,56) = 34.
Подставим полученный угол в (4.3.24) и рассчитаем угловую дисперсию:
D = k/(dcos) = 9,65105 м-1.
Ответ: (/)макс = 8000, D = 9,65105 м-1.