
- •Сборник тестовых заданий по медицинской физике с решениями
- •Введение в теорию вероятности. Механика. Колебания и волны. Акустика. Звук
- •Тестовые задачи первого уровня
- •1.3. Тестовые задачи третьего уровня
- •1.3.1. Элементы теории вероятностей
- •1.3.2. Случайные величины
- •1.3.3. Элементы математической статистики
- •Выборочное среднее квадратическое отклонение
- •Точность интервальной оценки по малой выборке
- •1.3.4. Проверка статистических гипотез
- •Примеры использования статистических критериев.
- •1.3.5. Кинематика поступательного движения материальной точки
- •1.3.6. Кинематика вращательного движения вокруг неподвижной оси
- •1.3.7. Основное уравнение динамики поступательного движения материальной точки. Импульс. Закон сохранения импульса
- •1.3.8. Динамика вращательного движения твердого тела
- •1.3.9. Полная механическая энергия тела. Законы сохранения и изменения энергии
- •1.3.10. Колебания
- •1.3.11. Акустика. Физические характеристики звука. Характеристики слухового ощущения
- •Физические характеристики звука:
- •1.3.12. Механические волны. Плоская волна
- •Длиной волны называется расстояние, на которое перемещается ее фронт за время равное периоду колебаний частиц среды:
- •1.3.13. Эффект Доплера
- •1.1. Выберите правильный ответ:
- •2.1. Выберите правильный ответ:
- •3.1. Выберите правильный ответ:
- •4.1. Выберите правильный ответ:
- •5.1. Выберите правильный ответ:
- •6.1. Выберите правильный ответ:
- •2. Электричество
- •2.1. Тестовые задачи первого уровня
- •2.3. Тестовые задачи третьего уровня
- •2.3.1. Принцип суперпозиции для вектора напряженности электрического поля
- •2.3.2. Принцип суперпозиции для потенциала электростатического поля
- •2.3.3. Работа силы Кулона
- •2.3.4. Связь вектора напряженности электрического поля и потенциала
- •2.3.5. Диполь в электрическом поле
- •2.3.6. Ёмкость. Конденсаторы
- •2.3.7. Законы постоянного тока
- •2.3.8. Биоэлектрические потенциалы
- •3. Магнетизм и электромагнетизм. Электромагнитные колебания
- •3.1. Тестовые задачи первого уровня
- •3.2. Тестовые задачи второго уровня
- •3.3. Тестовые задачи третьего уровня
- •3.3.1. Принцип суперпозиции магнитного поля
- •3.3.2. Силы Ампера и Лоренца
- •3.3.3. Электромагнитная индукция. Эдс индукции и самоиндукции
- •3.3.4. Электрические колебания
- •3.3.5. Медицинская электроника
- •Количественным показателем надежности является также
- •Знак «–» взят потому, что dN 0, так как число работающих изделий убывает со временем.
- •Вариант 1
- •2.1. Выберите правильный ответ:
- •3.1. Выберите правильный ответ:
- •4.3. Выберите правильный ответ:
- •5.1. Выберите правильный ответ:
- •5.2. Выберите правильный ответ:
- •5.3.Выберите правильный ответ:
- •5.4. Выберите правильный ответ:
- •Ответы к тестам
- •4. Оптика
- •4.1. Тестовые задачи первого уровня
- •7. Схема медицинского сахариметра
- •Название элементов
- •8. Недостатки оптической Типы линз для
- •4.3. Тестовые задачи третьего уровня
- •4.3.1. Интерференция
- •Если оптическая разность хода когерентных волн, пришедших от таких источников, равна нечетному числу длин полуволн
- •4.3.2. Дифракция
- •4.3.3. Поляризация электромагнитных волн. Оптически активные среды
- •4.3.4. Геометрическая оптика. Разрешающая сила оптических систем
- •Найти: г.
- •4.3.5. Поглощение света. Закон Бугера-Ламберта. Люминесценция
- •5. Физика атомов и молекул. Ионизирующее излучение и основы дозиметрии
- •5.1. Тестовые задачи первого уровня
- •7. Области спектра Фотобиологическое
- •5.3. Тестовые задачи третьего уровня
- •5.3.1. Тепловое излучение
- •5.3.2. Волны де Бройля
- •5.3.3. Фотоны. Энергия фотонов
- •5.3.4. Электронный парамагнитный резонанс
- •5.3.5. Ионизирующее излучение. Дозиметрия
- •Ответ: телом животного поглощено 1012 электронов.
- •2.1. Укажите формулу Бугера-Ламберта:
- •2.2. Абсолютно черным телом называется
- •2.3. Укажите формулу, выражающую длину волны де Бройля:
- •3.1. На какую глубину проникает в биологические ткани бета-излучение?
- •3.2. Укажите формулу, выражающую условие возникновения электронного парамагнитного резонанса
- •3.3. Предел разрешения электронного микроскопа порядка
- •3.4. Что называется плоскостью поляризации света?
- •4.3. В каких системных и внесистемных единицах измеряется экспозиционная доза?
- •4.4. От какого из перечисленных видов излучения труднее всего защититься?
- •5.1. В интерферометре Майкельсона одно из зеркал передвинули вдоль луча на расстояние /2. На сколько изменилась при этом оптическая разность хода интерферирующих лучей?
- •5.2. Укажите формулу дифракционных минимумов при дифракции света на узкой щели:
- •5.3. В световодах волокно с показателем преломления n1 покрыто веществом с показателем n2. Укажите правильное соотношение между n1 и n2.
- •5.4. Зависит ли угол поворота плоскости поляризации оптически активным веществом от длины волны плоскополяризованого света?
Если оптическая разность хода когерентных волн, пришедших от таких источников, равна нечетному числу длин полуволн
мин
= (2k
+ 1),
k
– целое число, (4.3.5)
то волны приходят в противофазе и гасят друг друга, т.е. получается интерференционный минимум интенсивности света.
Пример 1. В точку пространства приходят световые когерентные волны, от источников, испускающих волны в одинаковой фазе, с оптической разностью хода 3 мкм. Длина волны света равна 500 нм. Чему равна соответствующая разность фаз? Каков результат интерференции света в этой точке?
Дано: = 500 нм = 50010-9 м,
= 3 мкм = 310-6 м.
Найти: , k.
Решение. Запишем условие максимума интерференции (4.3.4) и подставим в него числовые данные:
макс
= 2k
310-6
= 2k(50010-9/2),
откуда
k = 6, то есть, в данной точке пространства мы будем наблюдать максимум интенсивности света.
Для того чтобы найти разность фаз, запишем условие (4.3.2) и подставим в него полученное значение k:
= 2 – 1 = 2k = 26 = 12.
Ответ: = 12, максимум интерференции.
Пример 2. Разность фаз двух интерферирующих волн, от двух когерентных источников, испускающих волны в одинаковой фазе, в точке наблюдения равна 5. Длина волны света 600 нм. Чему равна соответствующая разность хода? Каков результат интерференции света?
Дано: = 5,
= 600 нм = 60010-9м,
Найти: , k.
Решение. По условию задачи разность фаз составляет 5, то есть у нас нечетное число . Таким образом, в точке интерференции двух волн будет наблюдаться минимум интенсивности света, поэтому необходимо записать условие минимума интерференции (4.3.1):
= 2 – 1 = (2k +1) = 5,
откуда выразить порядок интерференции k: k = 2.
Для того чтобы найти оптическую разность хода, запишем условие минимума интерференции (4.3.5) и подставим соответствующие числовые данные:
мин
= (2k
+ 1)
= (22
+1)(60010-9/2)
= 310-6м
= 3 мкм.
Ответ: k = 2, наблюдаем минимум интерференции, мин = 3 мкм.
4.3.2. Дифракция
Каждый участок волнового фронта электромагнитной волны – это быстропеременные колебания электрических и магнитных полей, которые, согласно уравнениям Максвелла, снова порождают электромагнитную волну. Иначе говоря,
Любой участок волнового фронта является источником вторичных электромагнитных волн, имеющих ту же частоту и распространяющихся во все стороны с такой же фазовой скоростью и складывающихся в точке наблюдения дифракции.
Это утверждение называется принципом Гюйгенса-Френеля.
Дифракция электромагнитных волн – это явления, возникающие при сложении бесконечного числа вторичных электромагнитных волн, испущенных каждой точкой волнового фронта. При этом появляются отклонения от законов геометрической оптики.
В частности, в результате дифракции происходит огибание волнами препятствий, а также образование картины чередующихся максимумов и минимумов освещенности, аналогичной интерференционной картине.
При падении плоской волны на узкую щель шириной а, условие максимума дифракции будет иметь вид:
tg( /2) = /2, 0 (4.3.6)
Первыми тремя корнями этого уравнения будут соответственно:
1 = 8,99 рад, 2 = 15,45 рад, 3 = 21,81 рад.
Условие минимума дифракции при этом будет иметь вид:
asin
= 2k
,
(4.3.7)
Дифракционная решетка – это система из N одинаковых щелей, расположенных на равном расстоянии d (постоянная решетки) друг от друга.
Условие главных интерференционных максимумов интенсивности света, прошедшего через дифракционную решетку:
dsin = k. (4.3.8)
Здесь – угол дифракции, k – порядок интерференционного максимума.
Если ширина дифракционной решетки l, и число щелей N, то постоянная решетки вычисляется по формуле
d = l/N. (4.3.9)
Пример 3. Во сколько раз различаются ширины двух щелей, если при нормальном падении на них одного и того же монохроматического света третий дифракционный минимум от первой щели наблюдается под тем же углом, что и второй дифракционный минимум от второй щели.
Дано: k1 = 3,
k2 = 2,
1= 2,
Найти: а2/а1.
Решение. Запишем условие минимума (4.3.7) для первой и второй щели:
a1
sin
= 2k1
, k1
= 3, откуда a1
sin
= 6
,
a2
sin
= 2k2
, k2
= 2, откуда
a2
sin
= 4
.
Получаем:
а2/а1 = 1/3.
Ответ: 1/3.
Пример 4. Какой наивысший порядок спектра можно наблюдать при нормальном падении на щель монохроматического света, если длина волны укладывается в ширине щели 7 раз?
Дано: а = 7,
Найти: kмакс.
Решение. Необходимо записать условие максимума дифракции на щели:
asin
= (2k
+ 1)
и учесть, что в условии задачи надо найти максимальный порядок спектра kмакс. Поскольку ширина щели а и длина волны света, падающего на щель, остаются постоянными, то наивысший порядок спектра будет наблюдаться при условии максимума синуса угла дифракции ((sin)макс = 1):
a(sin)макс
= (2kмакс
+ 1)
7
= (2kмакс
+ 1)
,
14 = 2kмакс + 1 kмакс = 13/2 = 6 (ответ округляем до целых).
Ответ: kмакс = 6.
Пример 5. Дифракционная решетка имеет 2500 штрихов на 1 см, при этом максимум четвертого порядка наблюдается под углом 30. Найти длину волны падающего света. Какой наивысший порядок спектра можно наблюдать с помощью этой дифракционной решетки, если на нее нормально падает свет с длиной волны 670 нм?
Дано: N = 2500,
l = 1 см = 0,01 м,
k = 4,
= 30,
= 670 нм = 67010-9м.
Найти: , kмакс.
Решение. а) Найдем длину волны света, падающего на дифракционную решетку. Для этого запишем условие главных интерференционных максимумов (4.3.8) при падении света на решетку, а также формулу (4.3.9) для расчета постоянной решетки:
dsin = k, d = l/N, (l/N) sin = k.
Выразим из последней формулы длину волны :
= (l sin )/(N k) = 510-7м = 500 нм.
б) Найдем теперь наивысший порядок спектра, который можно наблюдать помощью этой дифракционной решетки, если на нее нормально падает свет с длиной волны 670 нм. Для этого запишем условие дифракционных максимумов (4.3.8) с учетом (4.3.9), а также с учетом того факта, что наивысший порядок спектра будет наблюдаться при условии максимума угла дифракции (см. пример 4):
d(sin )макс= kмакс, (sin )макс = 1, d = l/N,
имеем:
kмакс = l/(N) = 5,9 = 5.
Ответ: = 500 нм, kмакс = 5.