
- •Сборник тестовых заданий по медицинской физике с решениями
- •Введение в теорию вероятности. Механика. Колебания и волны. Акустика. Звук
- •Тестовые задачи первого уровня
- •1.3. Тестовые задачи третьего уровня
- •1.3.1. Элементы теории вероятностей
- •1.3.2. Случайные величины
- •1.3.3. Элементы математической статистики
- •Выборочное среднее квадратическое отклонение
- •Точность интервальной оценки по малой выборке
- •1.3.4. Проверка статистических гипотез
- •Примеры использования статистических критериев.
- •1.3.5. Кинематика поступательного движения материальной точки
- •1.3.6. Кинематика вращательного движения вокруг неподвижной оси
- •1.3.7. Основное уравнение динамики поступательного движения материальной точки. Импульс. Закон сохранения импульса
- •1.3.8. Динамика вращательного движения твердого тела
- •1.3.9. Полная механическая энергия тела. Законы сохранения и изменения энергии
- •1.3.10. Колебания
- •1.3.11. Акустика. Физические характеристики звука. Характеристики слухового ощущения
- •Физические характеристики звука:
- •1.3.12. Механические волны. Плоская волна
- •Длиной волны называется расстояние, на которое перемещается ее фронт за время равное периоду колебаний частиц среды:
- •1.3.13. Эффект Доплера
- •1.1. Выберите правильный ответ:
- •2.1. Выберите правильный ответ:
- •3.1. Выберите правильный ответ:
- •4.1. Выберите правильный ответ:
- •5.1. Выберите правильный ответ:
- •6.1. Выберите правильный ответ:
- •2. Электричество
- •2.1. Тестовые задачи первого уровня
- •2.3. Тестовые задачи третьего уровня
- •2.3.1. Принцип суперпозиции для вектора напряженности электрического поля
- •2.3.2. Принцип суперпозиции для потенциала электростатического поля
- •2.3.3. Работа силы Кулона
- •2.3.4. Связь вектора напряженности электрического поля и потенциала
- •2.3.5. Диполь в электрическом поле
- •2.3.6. Ёмкость. Конденсаторы
- •2.3.7. Законы постоянного тока
- •2.3.8. Биоэлектрические потенциалы
- •3. Магнетизм и электромагнетизм. Электромагнитные колебания
- •3.1. Тестовые задачи первого уровня
- •3.2. Тестовые задачи второго уровня
- •3.3. Тестовые задачи третьего уровня
- •3.3.1. Принцип суперпозиции магнитного поля
- •3.3.2. Силы Ампера и Лоренца
- •3.3.3. Электромагнитная индукция. Эдс индукции и самоиндукции
- •3.3.4. Электрические колебания
- •3.3.5. Медицинская электроника
- •Количественным показателем надежности является также
- •Знак «–» взят потому, что dN 0, так как число работающих изделий убывает со временем.
- •Вариант 1
- •2.1. Выберите правильный ответ:
- •3.1. Выберите правильный ответ:
- •4.3. Выберите правильный ответ:
- •5.1. Выберите правильный ответ:
- •5.2. Выберите правильный ответ:
- •5.3.Выберите правильный ответ:
- •5.4. Выберите правильный ответ:
- •Ответы к тестам
- •4. Оптика
- •4.1. Тестовые задачи первого уровня
- •7. Схема медицинского сахариметра
- •Название элементов
- •8. Недостатки оптической Типы линз для
- •4.3. Тестовые задачи третьего уровня
- •4.3.1. Интерференция
- •Если оптическая разность хода когерентных волн, пришедших от таких источников, равна нечетному числу длин полуволн
- •4.3.2. Дифракция
- •4.3.3. Поляризация электромагнитных волн. Оптически активные среды
- •4.3.4. Геометрическая оптика. Разрешающая сила оптических систем
- •Найти: г.
- •4.3.5. Поглощение света. Закон Бугера-Ламберта. Люминесценция
- •5. Физика атомов и молекул. Ионизирующее излучение и основы дозиметрии
- •5.1. Тестовые задачи первого уровня
- •7. Области спектра Фотобиологическое
- •5.3. Тестовые задачи третьего уровня
- •5.3.1. Тепловое излучение
- •5.3.2. Волны де Бройля
- •5.3.3. Фотоны. Энергия фотонов
- •5.3.4. Электронный парамагнитный резонанс
- •5.3.5. Ионизирующее излучение. Дозиметрия
- •Ответ: телом животного поглощено 1012 электронов.
- •2.1. Укажите формулу Бугера-Ламберта:
- •2.2. Абсолютно черным телом называется
- •2.3. Укажите формулу, выражающую длину волны де Бройля:
- •3.1. На какую глубину проникает в биологические ткани бета-излучение?
- •3.2. Укажите формулу, выражающую условие возникновения электронного парамагнитного резонанса
- •3.3. Предел разрешения электронного микроскопа порядка
- •3.4. Что называется плоскостью поляризации света?
- •4.3. В каких системных и внесистемных единицах измеряется экспозиционная доза?
- •4.4. От какого из перечисленных видов излучения труднее всего защититься?
- •5.1. В интерферометре Майкельсона одно из зеркал передвинули вдоль луча на расстояние /2. На сколько изменилась при этом оптическая разность хода интерферирующих лучей?
- •5.2. Укажите формулу дифракционных минимумов при дифракции света на узкой щели:
- •5.3. В световодах волокно с показателем преломления n1 покрыто веществом с показателем n2. Укажите правильное соотношение между n1 и n2.
- •5.4. Зависит ли угол поворота плоскости поляризации оптически активным веществом от длины волны плоскополяризованого света?
3.3.4. Электрические колебания
Если колебательный контур состоит из последовательно соединенных конденсатора и катушки индуктивности с нулевым омическим сопротивлением, то колебания в таком контуре будут незатухающими (собственными). Уравнение собственных гармонических незатухающих колебаний:
q = q0cos(0t + 0), (3.3.21)
где q0 – амплитудное значение заряда на конденсаторе, 0 – циклическая частота собственных незатухающих колебаний, 0 – начальная фаза колебаний.
Собственная частота незатухающих колебаний 0 определяется выражением
0
=
,
(3.3.22)
где L – индуктивность катушки индуктивности, С – емкость конденсатора.
Если колебательный контур состоит из последовательно соединенных резистора (омического сопротивления) с сопротивлением R, конденсатора емкостью С и катушки индуктивности с индуктивностью L, то колебания в таком контуре будут затухающими, а уравнение затухающих колебаний будет выглядеть так:
q = q0exp(–t)cos(t + 0). (3.3.23)
Здесь – циклическая частота собственных затухающих колебаний, определяемая выражением
=
,
(3.3.24)
– коэффициент затухания, причем
=
.
(3.3.25)
Импедансом Z называется полное сопротивление цепи, которая содержит омическое сопротивление (оно еще называется активным), катушку индуктивности и конденсатор:
Z
=
.
(3.3.26)
Период колебаний в контуре, если в нем совершаются собственные незатухающие колебания, определяется выражением
Т = 1/ = 2/0. (3.3.27)
Для случая собственных затухающих колебаний период колебания следует вычислять по формуле
Т = 2/, (3.3.28)
где частота определяется выражением (3.3.24).
Пример 30. Определить коэффициент затухания и емкость колебательного контура аппарата УВЧ, если активное сопротивление R = 4,3103 Ом, индуктивность катушки L = 65мкГн, а частота электрических колебаний в контуре составляет = 20 МГц.
Дано: R = 4,3103 Ом,
L = 65мкГн = 6510–6 Гн,
= 20 МГц = 20106 Гц.
Найти: , С.
Решение. Поскольку в колебательном контуре имеется омическое сопротивление, то колебания будут затухать. Запишем исходные формулы для решения задачи. Для нахождения коэффициента затухания воспользуемся формулой (3.3.25):
=,
подставим
в нее числовые данные:
=
= 33106
с–1.
Емкость конденсатора найдем с помощью выражений (3.3.22) и (3.3.24):
0
=,
=
.
Собственная частота затухающих колебаний нам неизвестна, но мы знаем, как связаны между собой частота и циклическая частота:
= 2, (3.3.29)
поэтому
2
=
=.
Выразим из (3.3.24) частоту 0, а затем и емкость конденсатора:
0
=
=
,
откудаС
=
= 310–12
Ф.
Ответ: 33106 с–1; 310–12 Ф.
Пример 31. Колебательный контур состоит из двух конденсаторов, соединенных последовательно, емкостью 10000 пФ каждый и соленоида. Определить индуктивность катушки, если контур резонирует на частоту волны 300 кГц.
Дано: р = 300 кГц = 300000Гц,
С1 = С2 = С = 10000 пФ = 10–8 Ф.
Найти: L.
Решение. Резонансная частота определяется формулой (3.3.22):
р
=,
откуда легко выразить искомую в задаче индуктивность катушки:
L = 1/(Cобщр2).
Здесь Cобщ – общая емкость батареи из двух последовательно соединенный конденсаторов, которую находим из формулы (2.3.34):
1/Cобщ = 1/С1 + 1/С2 , откуда Cобщ = С1С2/(С1 + С2) = С/2 = 510–9 Ф.
Тогда для индуктивности имеем:
L = 1/(Cобщр) = 2/(Cр2) = 2,210–3 Гн.
Ответ: 510–9 Ф; 2,210–3 Гн.