
- •Сборник тестовых заданий по медицинской физике с решениями
- •Введение в теорию вероятности. Механика. Колебания и волны. Акустика. Звук
- •Тестовые задачи первого уровня
- •1.3. Тестовые задачи третьего уровня
- •1.3.1. Элементы теории вероятностей
- •1.3.2. Случайные величины
- •1.3.3. Элементы математической статистики
- •Выборочное среднее квадратическое отклонение
- •Точность интервальной оценки по малой выборке
- •1.3.4. Проверка статистических гипотез
- •Примеры использования статистических критериев.
- •1.3.5. Кинематика поступательного движения материальной точки
- •1.3.6. Кинематика вращательного движения вокруг неподвижной оси
- •1.3.7. Основное уравнение динамики поступательного движения материальной точки. Импульс. Закон сохранения импульса
- •1.3.8. Динамика вращательного движения твердого тела
- •1.3.9. Полная механическая энергия тела. Законы сохранения и изменения энергии
- •1.3.10. Колебания
- •1.3.11. Акустика. Физические характеристики звука. Характеристики слухового ощущения
- •Физические характеристики звука:
- •1.3.12. Механические волны. Плоская волна
- •Длиной волны называется расстояние, на которое перемещается ее фронт за время равное периоду колебаний частиц среды:
- •1.3.13. Эффект Доплера
- •1.1. Выберите правильный ответ:
- •2.1. Выберите правильный ответ:
- •3.1. Выберите правильный ответ:
- •4.1. Выберите правильный ответ:
- •5.1. Выберите правильный ответ:
- •6.1. Выберите правильный ответ:
- •2. Электричество
- •2.1. Тестовые задачи первого уровня
- •2.3. Тестовые задачи третьего уровня
- •2.3.1. Принцип суперпозиции для вектора напряженности электрического поля
- •2.3.2. Принцип суперпозиции для потенциала электростатического поля
- •2.3.3. Работа силы Кулона
- •2.3.4. Связь вектора напряженности электрического поля и потенциала
- •2.3.5. Диполь в электрическом поле
- •2.3.6. Ёмкость. Конденсаторы
- •2.3.7. Законы постоянного тока
- •2.3.8. Биоэлектрические потенциалы
- •3. Магнетизм и электромагнетизм. Электромагнитные колебания
- •3.1. Тестовые задачи первого уровня
- •3.2. Тестовые задачи второго уровня
- •3.3. Тестовые задачи третьего уровня
- •3.3.1. Принцип суперпозиции магнитного поля
- •3.3.2. Силы Ампера и Лоренца
- •3.3.3. Электромагнитная индукция. Эдс индукции и самоиндукции
- •3.3.4. Электрические колебания
- •3.3.5. Медицинская электроника
- •Количественным показателем надежности является также
- •Знак «–» взят потому, что dN 0, так как число работающих изделий убывает со временем.
- •Вариант 1
- •2.1. Выберите правильный ответ:
- •3.1. Выберите правильный ответ:
- •4.3. Выберите правильный ответ:
- •5.1. Выберите правильный ответ:
- •5.2. Выберите правильный ответ:
- •5.3.Выберите правильный ответ:
- •5.4. Выберите правильный ответ:
- •Ответы к тестам
- •4. Оптика
- •4.1. Тестовые задачи первого уровня
- •7. Схема медицинского сахариметра
- •Название элементов
- •8. Недостатки оптической Типы линз для
- •4.3. Тестовые задачи третьего уровня
- •4.3.1. Интерференция
- •Если оптическая разность хода когерентных волн, пришедших от таких источников, равна нечетному числу длин полуволн
- •4.3.2. Дифракция
- •4.3.3. Поляризация электромагнитных волн. Оптически активные среды
- •4.3.4. Геометрическая оптика. Разрешающая сила оптических систем
- •Найти: г.
- •4.3.5. Поглощение света. Закон Бугера-Ламберта. Люминесценция
- •5. Физика атомов и молекул. Ионизирующее излучение и основы дозиметрии
- •5.1. Тестовые задачи первого уровня
- •7. Области спектра Фотобиологическое
- •5.3. Тестовые задачи третьего уровня
- •5.3.1. Тепловое излучение
- •5.3.2. Волны де Бройля
- •5.3.3. Фотоны. Энергия фотонов
- •5.3.4. Электронный парамагнитный резонанс
- •5.3.5. Ионизирующее излучение. Дозиметрия
- •Ответ: телом животного поглощено 1012 электронов.
- •2.1. Укажите формулу Бугера-Ламберта:
- •2.2. Абсолютно черным телом называется
- •2.3. Укажите формулу, выражающую длину волны де Бройля:
- •3.1. На какую глубину проникает в биологические ткани бета-излучение?
- •3.2. Укажите формулу, выражающую условие возникновения электронного парамагнитного резонанса
- •3.3. Предел разрешения электронного микроскопа порядка
- •3.4. Что называется плоскостью поляризации света?
- •4.3. В каких системных и внесистемных единицах измеряется экспозиционная доза?
- •4.4. От какого из перечисленных видов излучения труднее всего защититься?
- •5.1. В интерферометре Майкельсона одно из зеркал передвинули вдоль луча на расстояние /2. На сколько изменилась при этом оптическая разность хода интерферирующих лучей?
- •5.2. Укажите формулу дифракционных минимумов при дифракции света на узкой щели:
- •5.3. В световодах волокно с показателем преломления n1 покрыто веществом с показателем n2. Укажите правильное соотношение между n1 и n2.
- •5.4. Зависит ли угол поворота плоскости поляризации оптически активным веществом от длины волны плоскополяризованого света?
1.3.12. Механические волны. Плоская волна
Процесс распространения механических колебаний в упругой среде называется упругой, или механической, волной.
С волной связан перенос энергии колебаний от источника колебаний к периферийным участкам среды. При этом в среде возникают периодические деформации сжатия и сдвига, которые переносятся волной из одной точки среды в другую. При распространении механической волны сами частицы среды не перемещаются вместе с ней, а колеблются около своих положений равновесия. Поэтому распространение волны не сопровождается переносом вещества.
Механические волны различаются по тому, как колебания частиц среды ориентированы относительно направления распространения волны. Простейшие типы волн в этом случае следующие.
Продольные волны – такие, в которых частицы среды колеблются вдоль направления распространения колебаний. При этом в среде чередуются области сжатия и разряжения. Продольные механические волны могут возникать во всех средах (твердых, жидких и газообразных).
Поперечные волны – такие, в которых частицы колеблются перпендикулярно к направлению распространения колебаний. При этом в среде возникают периодические деформации сдвига.
В жидкостях и газах упругие силы возникают только при сжатии и не возникают при сдвиге, поэтому поперечные волны в этих средах не возникают. Исключение составляют волны на поверхности жидкости.
Фронт волны – геометрическое место точек (поверхность), в которых фаза колебаний имеет одно и то же значение. Для всех точек фронта время, за которое до них дошло возмущение, одинаково.
Скоростью волны v называется скорость перемещения ее фронта. Скорость волны зависит от свойств среды и типа волны: поперечные и продольные волны в твердом теле распространяются с различными скоростями.
Скорость звуковой волны в воздухе при нормальных условиях составляет около 330 м/с.
Форма волнового фронта определяет геометрический тип волны. Простейшие типы волн по этому признаку – плоские и сферические.
Плоской называется волна, у которой фронтом является плоскость, перпендикулярная направлению распространения. Плоские волны возникают, например, в закрытом поршнем цилиндре с газом, когда поршень совершает колебания.
Сферической называется волна, у которой фронт имеет форму сферы. Такой, например, является волна, вызываемая в однородной среде точечным источником.
Для волны, созданной гармоническими колебаниями источника, колебания точек среды также являются гармоническими. Такая волна называется гармонической. Колебания каждой точки среды описываются уравнением
х = Acos(t + 0),
где А – амплитуда колебаний данной точки, – круговая (циклическая) частота колебаний, определяемая частотой внешнего воздействия ( = 2) и потому одинаковая для всех точек, 0 – фаза колебаний данной точки в момент времени t = 0 (начальная фаза колебаний).
Рассмотрим распространение плоской волны, созданной гармоническими колебаниями источника: xи = Acos(t). Если некоторая точка среды удалена от источника на расстояние s, а скорость волны – V, то возмущение, созданное источником, достигнет этой точки через время t = s/V. Поэтому фаза колебаний в рассматриваемой точке в момент времени t будет такой же, как фаза колебаний источника в момент времени (t = s/V). В результате колебания данной точки будут определяться уравнением:
х = Acos[(t – s/V)]. (1.3.82)
Уравнение (1.3.82), определяющее смещение любой точки среды в любой момент времени, называется уравнением плоской волны. Аргумент при косинусе – величина = (t – s/V) – называется фазой волны.
Обычно вместо круговой частоты колебаний указывают частоту или период колебаний точек среды Т. Связь между этими величинами:
= 2 = 2/Т. (1.3.83)