- •Содержание
- •Благодарности
- •Введение
- •Проект
- •Функциональные модули
- •Процессор и библиотека конечных элементов
- •Графический препроцессор
- •Группы
- •Фильтры
- •Графический постпроцессор
- •Документирование результатов
- •Для кого предназначена книга
- •Замечания авторов
- •Мышь
- •Курсоры
- •Меню
- •Проект
- •Опции
- •Справка
- •Проект
- •Файл
- •Опции
- •Операции
- •Сервис
- •Справка
- •Инструментальная панель
- •Диалоговые окна
- •Фильтры
- •Пиктограммы
- •Загрузка комплекса
- •Работа с таблицами
- •Генерация схемы
- •Выбор элементов
- •Задание нагрузок
- •Расчет
- •Анализ перемещений
- •Анализ усилий
- •Печать результатов
- •РЕЗЮМЕ
- •2. Создание расчетной схемы
- •2.1 Расчетные схемы стержневых конструкций
- •Пространственные одноэтажные рамы
- •Формирование плоских шарнирно-стержневых систем
- •Плоские стержневые системы
- •Ввод узлов
- •Ввод элементов
- •Некоторые "тонкости"
- •2.3 Поверхности вращения
- •Вычисление радиуса по хорде
- •Цилиндр
- •Конус
- •Сфера
- •Правила ввода математических формул
- •2.5. Формирование поверхностей, заданных аналитически
- •2.6 Сборка схемы из нескольких схем
- •Сборка с группами элементов
- •Способы сборки
- •Правила выполнения сборки
- •Работа с нагрузками
- •Окно подсхемы
- •2.7 Копирование расчетной схемы
- •2.8 Копирование фрагмента схемы
- •2.9 Формирование расчетных схем из объемных элементов
- •2.10 Геометрические преобразования
- •Перенос
- •Поворот вокруг заданной оси
- •Масштабирование (полное)
- •2.11 Задание сетки координационных (разбивочных) осей
- •2.12 Ввод схемы на сетке координационных осей
- •3. Операции с узлами и элементами
- •Выбор узлов и элементов
- •3.1 Операции с узлами
- •Удаление узлов
- •Ввод узлов
- •Ввод дополнительных узлов между узлами
- •Перенос узлов
- •Объединение узлов с совпадающими координатами
- •Генерация узлов по дуге
- •Перенос одного узла в другой
- •Выбор узлов
- •3.2 Операции с элементами
- •Ввод стержневых элементов
- •Ввод объемных элементов
- •Удаление элементов
- •Разбивка стержня
- •Выбор элементов
- •Разделение элементов
- •Присоединение дополнительных узлов к элементам
- •3.3 Группы узлов и элементов
- •Создание групп
- •Выбор группы
- •4. Задание характеристик узлов и элементов
- •Назначение жесткостных характеристик стержневых элементов
- •Ввод нового типа жесткости
- •Параметрические сечения
- •Численное описание
- •Работа с сортаментом металлопроката
- •Характеристики сечения
- •Численно-параметрическое описание
- •Произвольные сечения
- •Назначение характеристик упругого основания
- •Корректировка характеристик заданного ранее типа жесткости
- •Ввод и назначение жесткостных характеристик пластинчатым элементам
- •Назначение жесткостных характеристик объемным элементам
- •Удаление эквивалентных типов жесткости
- •4.2 Назначение типа элемента
- •4.3 Задание абсолютно жестких вставок
- •4.4 Ввод и удаление шарниров
- •4.5 Углы ориентации главных осей инерции сечения
- •4.8 Назначение связей в узлах
- •4.9 Объединение перемещений
- •4.10 Напряжения вдоль заданного направления
- •4.12 Назначение геометрически нелинейных элементов
- •4.13 Односторонние связи
- •5.1 Задание статических загружений
- •Узловые нагрузки
- •Задание нагрузок на группу узлов
- •Нагрузки на стержневые элементы
- •Нагрузки на пластины
- •Температурные нагрузки
- •5.2 Удаление нагрузок
- •5.3 Группы нагрузок
- •Назначение коэффициентов группам нагрузок
- •Общие характеристики
- •Сейсмика
- •Сейсмика по заданным акселерограммам
- •Пульсации ветра
- •Гармонические колебания
- •Импульс, Удар
- •Модальный анализ
- •Ввод динамических нагрузок
- •6. Управление расчетом
- •7.1 Общие принципы управления отображением результатов
- •Цветовая шкала
- •Настройка цветовой шкалы
- •Установка номера загружения
- •Масштаб отображения
- •Вывод изолиний и изополей
- •Единицы измерения
- •7.2 Анализ деформаций
- •7.4 Анализ усилий и напряжений в пластинчатых элементах
- •7.5 Анализ результатов работы постпроцессоров
- •Анализ результатов работы постпроцессора подбора арматуры
- •Анализ результатов расчета нагрузок от фрагмента схемы
- •Отображение результатов расчета главных и эквивалентных напряжений
- •7.6 Формирование групп элементов
- •Подготовка групп элементов для постпроцессора подбора арматуры
- •8. Управление отображением расчетной схемы
- •Поворот схемы
- •Назначение шага поворота
- •Выделение плоского фрагмента
- •Выделение фрагмента с помощью рамки
- •Отсечение на проекциях
- •Крупный план
- •Полноэкранный режим работы
- •Фрагментация на координационных (разбивочных) осях
- •Настройка инструментальной панели Визуализация
- •8.2 Отображение информации на расчетной схеме
- •Фильтры отображения элементов
- •Вывод номеров элементов
- •Вывод номеров узлов
- •Вывод типов элементов
- •Вывод номеров типов жесткости
- •Корректировка жесткостей специальных элементов
- •Визуализация атрибутов элементов
- •Отображение узловых нагрузок
- •Отображение местных сосредоточенных нагрузок
- •Отображение местных распределенных нагрузок
- •Отображение масс
- •Вывод значений нагрузок
- •Отображение связей
- •Отображение координационных осей
- •Отображение групп объединения перемещений
- •Отображение направлений выдачи усилий в пластинчатых элементах
- •Вывод значений на изолиниях, изополях и эпюрах
- •Отображение жестких вставок
- •Отображение шарниров
- •Отображение узлов
- •Отображение удаленных узлов
- •Отображение совпадающих узлов
- •Отображение совпадающих элементов
- •Вывод размерных линий
- •Удаление линий невидимого контура
- •Цветовая индикация групп узлов и элементов
- •Информация об узле
- •Информация об элементе
- •Определение расстояния между узлами
- •Отмена выбора узлов и элементов
- •Навигатор
- •Начальная установка фильтров
- •Общие замечания по отображению информации на расчетной схеме
- •Настройка вывода цифровой информации
- •Печать расчетной схемы
- •8.3 Настройка графической среды
- •Характеристики бетона
- •Характеристики арматуры
- •Расчет коэффициентов упругого основания
- •9. Документирование исходных данных и результатов расчета
- •Текстовые файлы исходных данных и результатов
- •9.2 Документатор
- •Назначение вида выводимой информации и настройка Документатора
- •Окна настройки таблиц результатов
- •Комментарии к таблицам
- •Работа с иллюстрациями
- •Просмотр таблиц
- •Экспорт таблиц
- •10. Комбинации загружений
- •Унификация
- •Группы
- •12. Главные и эквивалентные напряжения
- •12.1 Главные напряжения для конечных элементов различных типов
- •Элементы балки стенки
- •Плиты и оболочки
- •Стержневые элементы
- •12.2 Вычисление эквивалентных напряжений
- •12.3 Подготовка данных для расчета главных и эквивалентных напряжений
- •13. Устойчивость
- •13.1 Постановка задачи
- •13.2 Поиск коэффициента запаса устойчивости
- •13.4 Свободные длины
- •13.5 Ввод данных
- •14. Спектры ответа
- •14.1 Расчет на сейсмические воздействия
- •14.2 Поэтажные акселерограммы и спектры ответа
- •14.3 Ввод данных и анализ результатов
- •14.4 Подготовка файлов акселерограмм
- •15. Расчет нагрузок от фрагмента схемы
- •15.1 Ввод исходных данных
- •15.2 Описание фрагментов
- •16. Армирование сечений железобетонных элементов
- •Ограничения реализации
- •Модуль 1 (Стержень 2D)
- •Модуль 2 (Стержень 3D)
- •Модуль 11 (Плита. Оболочка)
- •Подготовка данных
- •Проверка заданного армирования
- •Другие возможности подготовки данных
- •Дополнительная информация по исходным данным
- •Расчет
- •Результаты расчета
- •Поперечная арматура
- •Проверка заданной арматуры
- •ЛИТЕРАТУРА
- •17. Проверка несущей способности стальных сечений
- •Установка параметров
- •Назначение конструктивных элементов
- •Назначение групп конструктивных элементов
- •Корректировка параметров конструктивных элементов и групп конструктивных элементов
- •Группы унификации
- •Расчет
- •Отображение результатов
- •Отчет
- •Подбор
- •Информация о результатах подбора
- •18. Управление нелинейным расчетом
- •19. Теоретические основы
- •19.1. Конструкция и ее расчетная схема
- •19.1.1. Общие сведения
- •19.1.2. Расчетная схема метода перемещений
- •19.1.3. Основные и дополнительные неизвестные
- •19.1.4. Внешние и внутренние связи
- •19.1.5. Условия сопряжения элементов с узлами системы
- •19.1.6. Фрагменты, подсхемы, суперэлементы
- •19.1.7. Нагрузки и воздействия
- •19.2. Основные соотношения метода конечных элементов
- •19.2.1. Линейная статическая задача
- •19.2.2. Учет дополнительных связей
- •19.2.3. Динамическая задача
- •19.3. Решение систем уравнений
- •19.4. Стандартные случаи динамического нагружения
- •19.4.1. Ветровая нагрузка
- •19.4.2. Сейсмика
- •19.4.3. Импульсные нагрузки
- •19.4.4. Гармоническое возбуждение
- •19.4.5. Расчет по акселерограмме
- •19.5. Расчетные сочетания усилий (РСУ)
- •19.5.1. Стержни
- •19.5.2. Мембраны (плоское напряженное состояние)
- •19.5.3. Плиты
- •19.5.4. Оболочки
- •19.5.5. Объемные элементы
- •19.5.6. Загружения
- •20. Построение и анализ расчетных моделей
- •20.1. Выбор сетки конечных элементов
- •20.1.1. Сходимость МКЭ
- •20.1.2. О практической сходимости
- •20.1.3. Проверка сходимости для некоторых моделей
- •20.1.4. Обход особых точек
- •20.2. Фрагментация
- •20.2.1. Методы сшивки решений
- •20.2.2. Оценка погрешностей
- •20.2.3. Конструирование стыка
- •20.3. Наложение связей
- •20.3.1. Парирование изменяемости
- •20.3.2. Учет особенностей работы конечных элементов
- •20.3.3. Эффекты объединения перемещений
- •20.4. Конструкции на упругом основании
- •20.4.1. Использование законтурных элементов упругого основания
- •20.4.2. Выбор параметров упругого основания
- •20.4.3. Водонасыщенные грунты
- •20.5. Использование абсолютно жестких вставок
- •20.6. Расчет на заданные перемещения
- •20.7. Скрытые жесткости
- •20.8. Учет несовершенств системы
- •Литература к главам 19 и 20
- •Алфавитный указатель
2 0 . П о с т р о е н и е и а н а л и з р а с ч е т н ы х м о д е л е й
20.4. Конструкции на упругом основании
20.4.1. Использование законтурных элементов упругого основания
При расчете конструкций на упругом основании возникают проблемы учета распределительных свойств основания, которые игнорируются в простейшем случае винклерова основания (клавишная модель). Большинство реальных грунтов обладают распределительной способностью, когда, в отличие от винклеровой расчетной схемы, в работу вовлекаются не только непосредственно нагруженные части основания. Следовательно, для учета распределительной способности основания необходимо, во-первых, использовать отличные от винклеровой модели основания и, во-вторых, ввести в расчетную схему те части основания, которые расположены за пределом фундаментной конструкции.
Учет части основания, расположенной за областью Ω, занимаемой самой конструкцией, в SCAD может выполняться с использованием "бесконечных" конечных элементов [9] типа клина или полосы. Эти элементы позволяют смоделировать все окружение области Ω, если она является выпуклой и многоугольной (рис. 20.13).
Многоугольность области практически всегда обеспечивается с той или иной степенью точности. Если же область Ω является невыпуклой или неодносвязной, то она должна быть дополнена до выпуклой области конечными элементами ограниченных размеров. При этом в дополняемых частях толщина плиты принимается равной нулю.
Рис.20.13. Расположение законтурных конечных элементов типа клина и полосы: 1 - плита; 2 - дополнение области Ω до выпуклой; 3 - элемент-полоса; 4 - элемент-клин
Использование только имеющихся конечных элементов на упругом основании (стержней, плит, оболочек) и специальных законтурных элементов не позволяет создать произвольную расчетную схему конструкции, расположенной на упругом основании. В частности, могут возникнуть сложности, например, при попытке построить расчетную модель плотины, работающей в условиях плоской деформации, поскольку элементов типа балки-стенки на упругом основании комплекс SCAD не имеет.
Проблема решается очень просто путем включения между контуром плотины и грунтом элементов стержневого типа на упругом основании. При этом жесткость такого стержня может быть задана нулевой. Аналогично можно “подстелить” плиту с нулевой жесткостью на упругом основании под массивную часть расчетной модели.
17
2 0 . П о с т р о е н и е и а н а л и з р а с ч е т н ы х м о д е л е й
20.4.2. Выбор параметров упругого основания
Вычислительный комплекс SCAD предоставляет пользователям процедуры для расчета зданий и сооружений в контакте с основаниями. Эти процедуры состоят в вычислении обобщенных характеристик естественных или искусственных оснований. Обычно проектировщики испытывают определенные затруднения при назначении этих характеристик, особенно, для неоднородных слоистых оснований, т.к. получение соответствующих экспериментальных данных требует проведения специальных натурных испытаний, а накопленные табличные данные далеко не всегда адекватны реальным условиям проектирования. Отметим, что СНиП 2.02.01-83* ”Основания зданий и сооружений” дает определенный набор нормативных значений прочностных и деформационных характеристик грунтов, в том числе модули деформации (Приложение 1). Пункт 2.10 этого СНиП допускает применять другие параметры, характеризующие взаимодействие фундаментов с грунтом основания и устанавливаемых опытным путем, в том числе коэффициенты жесткости основания. Именно эти обобщенные характеристики, которые обычно закладывают в процедуры МКЭ для расчета зданий и сооружений в контакте с основаниями, включены в
SCAD.
Использование расчетных схем типа упругого слоя конечной толщины или упругого полупространства резко увеличивает размерность задачи. Поэтому получила широкое распространение модель П.Л.Пастернака [16] или В.З.Власова-Н.Н.Леонтьева [2] с двумя коэффициентами постели, в которой сохраняется размерность задачи при одновременной возможности учесть распределительные свойства грунта.
Для вычисления характеристик в состав комплекса введен специальный блок, в котором выделяется два состояния основания, соответствующих двум периодам.
1.Состояние в период возведения сооружения и непосредственно после возведения, когда происходит активная осадка сооружения вследствие необратимых деформаций основания.
2.Состояние после завершения осадочных явлений и стабилизации основания, т.е. в период нормальной эксплуатации сооружения.
Эти состояния требуют назначения различных расчетных схем основания. Первое предполагает возможным рассматривать его как линейно деформируемое полупространство, характеризуемое модулем деформации. Второе — как упругое полупространство, характеризуемое модулем упругости. Эти характеристики должны быть дополнены коэффициентами Пуассона. Они являются исходными параметрами для определения обобщенных характеристик основания, однородного или слоистого. В отличие от некоторых используемых методик, процедуры SCAD не требуют введения в исходные данные
таких параметров, как глубина сжимаемой толщи основания, определение которой согласно Приложения 2 СНиП 2.02.01-83* связано с расчетом напряженного состояния в слоях основания. Программа оперирует с таким параметром, как коэффициент затухания осадок по глубине слоев, который вычисляется в процессе расчета и не требует задания в явном виде, что представляется существенным преимуществом предложенных процедур.
Предполагается также, что и другие исходные данные (модули деформации или упругости, коэффициенты Пуассона) для слоев основания могут быть заданы не в явном виде, а путем выбора из описания тех грунтов и искусственных фаз оснований, которые соответствуют естественным проектируемым слоям и заложены в программу. В явном виде должны быть заданы только толщины промежуточных слоев, однако, не требуется задание глубины сжимаемой толщи нижнего подстилающего слоя.
Воснову процедур вычисления обобщенных характеристик основания, однородного или слоистого, положены два функциональных решения для полупространства:
•решение Ж.Буссинеска для осадки полупространства жестким штампом под равномерно распределенной нагрузкой (равномерным удельным давлением);
•решение для осадок полупространства под нагрузкой согласно упомянутой выше
двухпараметровой модели основания, обобщенное в [19] для слоистого полупространства. Соответственно второму решению, обобщенными характеристиками основания, вычисляемыми
SCAD, являются два параметра, характеризующие работу основания на сжатие и на сдвиг. Для двух
18
2 0 . П о с т р о е н и е и а н а л и з р а с ч е т н ы х м о д е л е й
рассматриваемых состояний основания они будут различны. Для первого состояния (периода необратимых осадок) исходными данными являются модули деформации и коэффициенты Пуассона слоев, их толщины, а также, дополнительно, площадь опорной конструкции здания или сооружения, непосредственно контактирующую с основанием. Предполагается, что сооружение с опорной конструкцией значительно превосходит жесткость основания, т.е. создается эффект “жесткого фундамента“. Поэтому, если сооружение состоит из нескольких раздельных блоков, то площадь опорной конструкции (фундамента) относят к каждому отдельному блоку. Полученные в результате расчета характеристики К1 и К2 являются коэффициентами деформативности основания при сжатии и сдвиге, соответственно.
Первый из этих коэффициентов - K1 (МН/М3=102Т/М3) позволяет определить прогнозируемую вертикальную осадку сооружения
W = P/K1, |
(20.13) |
где P - среднее действительное удельное давление по подошве конструкции (фундамента) сооружения. Это давление может быть сопоставлено со средним расчетным давлением (отпором) основания. Функция давления будет найдена по функции осадок (вертикальных перемещений) подошвы фундамента и является результатом расчета, отвечающего следующему выражению:
P(x,y) = K1W(x,y) - K2 2W(x,y), |
(20.14) |
где P(x,y), W(x,y) - функции давления (отпора ) и осадок в узлах, совместных для подошвы фундамента и поверхности основания. Сопоставимость заданных и расчетных значений P и W будет служить обоснованием достоверности результатов определения коэффициентов деформативности K1 и K2, а также прогнозируемой осадки проектируемого сооружения.
Для второго состояния основания (период нормальной эксплуатации сооружения) исходными данными являются модули упругости и коэффициенты Пуассона слоев, их толщины. Как и ранее, глубина нижнего подстилающего слоя не задается. Какие-либо данные о размерах опорной конструкции (фундамента) не вводятся. Получаемые характеристики C1 и C2 являются коэффициентами постели (жесткости) упругого основания при сжатии и сдвиге, соответственно. Они характеризуют работу основания, в котором возникают только упругие (обратимые) деформации под действием временных эксплуатационных нагрузок, а также нагрузок от природных явлений (ветер, снег и т.д.).
Формулы (20.13), (20.14) , в которых необходима замена K1→C1 и K2→C2, позволяют найти упругое вертикальное перемещение сооружения как жесткого целого, а результаты расчета сооружения - функции упругих перемещений и давления (отпора) по подошве фундамента сооружения.
20.4.3. Водонасыщенные грунты
Во многих случаях, в особенности при рассмотрении гидроэнергетических сооружений, следует считаться с тем, что грунты основания являются водонасыщенными. Теория таких сред, развитая Био [22], в которой учитывается упругое и вязкое взаимодействие твердой и жидкой фаз в пористоупругой насыщенной жидкостью двухфазной среде, достаточно сложна и используется чаще всего при решении весьма специфических проблем. Однако, можно рассмотреть предельные случаи водонасыщенной среды, различаемые по степени связности между твердой и жидкой фазами грунта.
Первым предельным случаем является среда "без связи", в которой жидкость свободно циркулирует между зернами твердой фазы (маловлажные пески, песчаники). Второй предельный случай - "совершенная связь", характеризуется тем, что жидкость не может циркулировать в замкнутых порах (глины, известняки) и выдавливается из них при действии внутренних напряжений.
Критерием для оценки перехода к предельным случаям является значение безразмерной константы
B = |
m2 |
× |
ρf × |
Ag |
, |
(20.15) |
1− m |
|
|||||
|
|
ρs |
KΦC2 |
|
||
где m - пористость, ρf и ρs - плотность жидкой и твердой фаз, A - полуширина фундамента, KΦ - коэффициент фильтрации, C2 - скорость распространения поперечной волны, g - ускорение свободного падения. Константа В в среде без связи стремится к нулю, а в среде с совершенной связью - к
19
