
магистры Эконометр мод-е / из эконометрики / Лекция2-4-корреляц анализ
.pdf
rxy
! " #
% &
S
r(y, x1, . . . , xm) = 1 − Sy ,
Sy ! ' ( S !
) & * + ,
+( #
-
& r(y, x1, . . . , xm)≥r(y, xj ) .j = 1, . . . , m/ 0
' 1
' (
'
#
r&
r(y, x1, . . . , xm) = |
1 − r11 , |
|
r |
r =
r(y, x1) |
1 1 |
|
r(x1, x2) . . . r(x1, xm) , |
|||||||||
1 |
|
|
r(y, x |
|
) |
r(y, x2) . . . r(y, xm) |
|
|||||
. . . |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r(y, x |
m |
) r(x |
, x |
m |
) r(x |
, x |
m |
) . . . |
1 |
|
||
|
|
1 |
|
2 |
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
r(x |
|
, x |
) . . . r(x |
, x |
|
) |
. |
||||
r11 |
= |
. . . |
|
1 |
|
2 |
|
|
1 |
|
m |
|
||||
|
|
r(x |
, x |
m |
) r(x |
, x |
m |
) . . . |
1 |
|
|
|
||||
|
|
|
1 |
|
2 |
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 r11 ( r
. ' /
2 r11
3 (
(
% ( # y=β0+β1x1+β2x2+ε
1 |
2 |
|
r2 |
(y, x1) + r2 |
1 − r2(x1, x2) |
|
|
|
r(y, x |
, x |
) = |
|
|
(y, x2) − 2r(y, x1)r(y, x2)r(x1 |
, x2) |
. |
|
|
|
|
|
% . / (
'
-

%
(
y xj ( -(
( ( (
( (
# 0 4
4 ( # 5
#
#
6 )
(
y = β0 + x1β1 + x2β2 + ε.
%- ! y ( ( x1
x2
+ " ' y x2 yˆ(x2)=αˆ1+αˆ2x2 7 6 S2(y, x2)= (yi − yˆ(xi2))2
8 x1
yˆ(x1, x2)=ˆγ0+ˆγ1x1+ˆγ2x2
9 6 S2(y, x1, x2)= (yi − yˆ(xi1, xi2))2
: ; x1 '
S2(y, x2)−S2(y, x1, x2) 4, 4 x1
y
|
1| |
2 |
|
|
S2(y, x2) |
|
|
|
|
r(y, x |
|
x |
) = |
S2 |
(y, x2)−S2(y, x1 |
, x2) |
. |
.+/ |
|
|
|
||||||||
|
|
|
|
< y
xj '
xj
S2
= .R2=1 − S2 /
y
.+/
|
1| 2 |
|
|
− |
1 − r2(y, x2) |
|
|
r(y, x |
x |
) = 1 |
|
1 − R2(y, x1, x2) |
. |
||
|
|
0 ( ' (
' &
r(y, x |
1| |
x |
) = |
r(y, x1) − r(y, x2)r(x1, x2) |
. |
.7/ |
|||
|
|
|
|
||||||
|
2 |
|
1 − r2(x1, x2) 1 − r2(y, x2) |
|
% )
- ( ( . /
# ( # #
< m
yi = b0 + b1xi1 + · · · + bmxim + εi

y xj
1 − R2(y, x1, . . . , xj , . . . , xm) r(y, xj |x1, . . . , xj−1, xj+1, . . . , xm) = 1 − 1 − R2(y, x1, . . . , xj−1, xj+1, . . . , xm) ,
R2(y, x1, . . . , xj , . . . , xm) ! m
( R2(y, x1, . . . , xj−1, xj+1, . . . , xm) !
xj m−1
? #
#
r(y, x |
j | |
x |
, . . . , x |
j−1 |
, x |
|
, . . . , x |
|
) = |
r(y, xj |x1, . . . , xm−1) − r(y, xm|x1, . . . , xm−1)r(xj , xm|x1, . . . , xm−1) |
||
|
|
|
|
|
||||||||
|
1 |
|
|
j+1 |
|
m |
|
(1 − r2(y, xm|x1, . . . , xm−1))(1 − r2(xj , xm|x1, . . . , xm−1)) |
. xj / % (
y x1 # # x2( x3 &
r(y, x |
1| |
x |
, x |
) = |
r(y, x1|x2) − r(y, x3|x2)r(x1, x3|x2) |
. |
||||||||
|
|
2 |
3 |
|
|
|
1 − r2 |
(y, x3|x2)(1 − r2(x1, x3|x2)) |
|
|||||
; |
|
|
|
|
|
|
|
|
|
|
t |
|||
|
' |
|||||||||||||
H0& r=0 6 & |
||||||||||||||
|
|
|
|
|
|
√ |
r |
|
√ |
|
, |
|||
|
|
|
|
|
t = |
|
n − l − 2 |
1− r2
n ! ( l ! #
t = tα(n − l − 2) 1 t < t ( α
.H0/(
=' # '
( ' # ( - -
% # ( -
# . # #/(
(
# ' -
& (
"- # ( '
0 @ ' # # X % -
. / ( ' -
y
- # - % #( (
- #( 3'
xs( - -
; F
F .
( / 1 F <F ( xs
- #
' # # 3' xp -
. AB CC # /
F
F 1 F >F ( xp
" F < F - # (
#
)
F &
Fxj = |
Ryx2 |
1...xj ...xk − Ryx2 |
1...xj−1xj+1 |
...xk |
· (n − m). |
|
|
1 − Ryx2 |
1...xj ...xk |
|
= F F =Fα(1, n−m)(
xj ( F <F
? ( -#
% -