Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

магистры Эконометр мод-е / из эконометрики / Лекция2-3-нелин регрессия

.pdf
Скачиваний:
26
Добавлен:
10.05.2015
Размер:
124.61 Кб
Скачать

! " $

! " %&'$

(

) " " * ! ( +" )$

,$ " * " y=a+bx + ε

-$ y=b1+b2x+b3x2+ε

.$ "" y=a+b/x + ε

/$ * " * " y=a+b log(x)+ε " * " y=a+b x+ε

1

0$ " * " y=a+bx + ε 1$ " y=axbε

2$ " y=abxε

3$ ( " y=ea+bx+ε

1

4$ " y=1 + be−cx+ε

,$ 5 " * " * " (**

%&' %&' "

" ) 6 -$7/$ " " "

( " "

%&' ' %&'

" "

"

& x1=x x2=x2

* 8

* 9 0$4$ " " "

" ! * $

-$ ' ) " " "

' )

: " !

$ ; " "

" +" " " = )

" ) : " " ( "

* >

" " ) * (

" )

! ?$ "

"

* " " " " "

> "

" " " "

" * "

* *

= " %&' "

* y=b1+b2x+b3x2+ε ( '

" b3 "

( " b3<0

: b3>0 " " ? )

xB =b2 ; ! $ % " xB

2b3

! $ (** b3

: "

> " " "

" 1$73$

.$ 6 " ) " ( "

! z=1/x$

% " " "

+ ? " "

' ; " 6 : "

) x

y @ ; " : "

" : ! $ ! "

" $ /$ 9 ) : ( *

: * *

%&' ! z= log(x)$ ? " )

* *

= * "

"

A ( * :

+" " " * "

*

0$ B " z=1/y

1$ ? " 1$74$ : " ) ε y = axbε

* " y = abx + ε ;

?( " ) " " * " 1$ C "

( ( " "

" (** ( (** b

" * " ,D B

" yˆ=105,56 · x1,12

,D " , ,-D ? (** ( " " =f (x)xy f (x) ; * " * x

y !yˆ=f (x)$ @ " * (** ( = abxb−1 axxb = b

" * " (** ( " "

" * x " yˆ=a+bx (

=b

x

( " " (** (

 

a + bx

 

5 * 1$ ln y= ln a+b ln x+ ln ε Y =A+bX + ν Y = ln y A= ln a X= ln x ν= ln ε

8 " * " 2$ @ " * " ( *

" * ! "

,E $

4$ F *

""

& "

* y=

1

 

Y =1/y Y =1+be−cx+ε

 

 

1 + be−cx+ε

@ 1 z=Y −1 z=be−cx+ε *

Z=B + Cx + ε Z= ln z B= ln b C= − c

& "

" " %&' " ( *

Q " * " ! G$ & "

" " Y =A+bX + ν Y = ln y A= ln a X= ln x

ˆ

ν= ln ε Q= (Yi Yi)= (ln y lnyˆ) min

B %&' " (**

" " " ( (**

" " (**

> "

* : "

y : " %&' "

' F "

" @ " ( (** R2 8 ) A

? ) " " "

" : * ?

* ) " " * " y=axb1 · · · · · xbm (**

(** ( ( " * "

y= exp(a + b1x1 + · · · + bmxm) y=

 

 

 

1

 

 

 

 

) *

 

 

 

 

 

 

 

 

 

a + b

x

 

+

· · ·

+ b

 

x

 

1

 

1

 

1

 

 

m

 

m

y=a + b1x1 + b2

 

+ b3 ln x3

H ( *

x2

 

 

 

 

 

 

 

 

? (** " *

R2 = 1 S2 , Sy2

Sy2=(Y −ys)T (Y −ys)= yi−y2 ; " y S2 =eT e= (yi−yˆi)2 ; "

" * (**

" R2=rxy2

A ( (** " ) *

8 " * (** " ! (

" "$

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ρ =

 

 

Sy2

 

 

(yi

 

y)2

 

 

= 1

 

S2

 

 

 

 

(yi−yˆi)2

.

 

R2

 

 

 

=

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

? " E , F ,

" *

 

" *

 

 

 

 

 

 

 

 

 

 

 

 

 

& " * " yˆ=abxε " ln yˆ=ln y = ln a+x ln b+ ln ε (** "

R2 = ρ2 = 1 (yi−yˆi)2 ,

(yi−y)2

yˆi = eln y " " ln yˆi

(** : " " "

!anti ln yˆi$

= 6 )

F " "

! : $

, %

" (** " @ " *

" (

: "

- > " (** " rxy =ryx !

x y y x$ " " (

F ( " "

* @ " " " "

!R2$ " (** "

* !R2$ F ( ) "

" *

" R2−R2

) E , * ?

" : "

(**

C

 

 

? " H0 R2=R2 ! $ ?

" "

 

 

 

 

 

 

R2−R2

 

 

 

 

 

 

 

 

 

 

t =

 

,

 

 

 

 

 

 

 

 

 

σ|R −R |

 

 

 

 

 

 

 

 

 

 

 

σ

 

|

; )

R2 R2 " " *

|R

−R

 

 

 

 

 

 

 

 

 

 

 

 

 

σ2

 

|

= 4

(R2 − R2) (R2 − R2)2 · (2 (R2 + R2))

.

 

 

 

|R

−R

 

 

 

 

n

C n " (

" " t =t(α, n) > |t|<t

" " p=1−α *