
магистры Эконометр мод-е / из эконометрики / Лекция2-3-нелин регрессия
.pdf
! " $
! " %&'$
(
) " " * ! ( +" )$
,$ " * " y=a+bx + ε
-$ y=b1+b2x+b3x2+ε
.$ "" y=a+b/x + ε √
/$ * " * " y=a+b log(x)+ε " * " y=a+b x+ε
1
0$ " * " y=a+bx + ε 1$ " y=axbε
2$ " y=abxε
3$ ( " y=ea+bx+ε
1
4$ " y=1 + be−cx+ε
,$ 5 " * " * " (**
%&' %&' "
" ) 6 -$7/$ " " "
( " "
%&' ' %&'
" "
"
& x1=x x2=x2
* 8
* 9 0$4$ " " "
" ! * $
-$ ' ) " " "
' )
: " !
$ ; " "
" +" " " = )
" ) : " " ( "

* >
" " ) * (
" )
! ?$ "
"
* " " " " "
> "
" " " "
" * "
* *
= " %&' "
* y=b1+b2x+b3x2+ε ( '
" b3 "
( " b3<0
: b3>0 " " ? )
xB =− b2 ; ! $ % " xB
2b3
! $ (** b3
: "
> " " "
" 1$73$
.$ 6 " ) " ( "
! z=1/x$
% " " "
+ ? " "
' ; " 6 : "
) x
y @ ; " : "
" : ! $ ! "
" $ /$ 9 ) : ( *
: * *
%&' ! z= log(x)$ ? " )
* *
= * "
"
A ( * :
+" " " * "
*
0$ B " z=1/y
1$ ? " 1$74$ : " ) ε y = axbε
* " y = abx + ε ;
?( " ) " " * " 1$ C "
( ( " "
" (** ( (** b
" * " ,D B
" yˆ=105,56 · x−1,12
,D " , ,-D ? (** ( " " =f (x)xy f (x) ; * " * x

y !yˆ=f (x)$ @ " * (** ( = abxb−1 axxb = b
" * " (** ( " "
" * x " yˆ=a+bx ( |
||
=b |
x |
( " " (** ( |
|
||
a + bx |
|
5 * 1$ ln y= ln a+b ln x+ ln ε Y =A+bX + ν Y = ln y A= ln a X= ln x ν= ln ε
8 " * " 2$ @ " * " ( *
" * ! "
,E $
4$ F *
"" |
& " |
||
* y= |
1 |
|
Y =1/y Y =1+be−cx+ε |
|
|
||
1 + be−cx+ε |
@ 1 z=Y −1 z=be−cx+ε *
Z=B + Cx + ε Z= ln z B= ln b C= − c
& "
" " %&' " ( *
Q " * " ! G$ & "
" " Y =A+bX + ν Y = ln y A= ln a X= ln x
− ˆ −
ν= ln ε Q= (Yi Yi)= (ln y lnyˆ) min
B %&' " (**
" " " ( (**
" " (**
> "
* : "
y : " %&' "
' F "
" @ " ( (** R2 8 ) A
? ) " " "
" : * ?
* ) " " * " y=axb1 · · · · · xbm (**
(** ( ( " * " |
||||||||||||
y= exp(a + b1x1 + · · · + bmxm) y= |
|
|
|
1 |
|
|
|
|
) * |
|||
|
|
|
|
|
|
|
|
|
||||
a + b |
x |
|
+ |
· · · |
+ b |
|
x |
|
||||
1 |
|
1 |
|
1 |
|
|
m |
|
m |
|||
y=a + b1x1 + b2 |
|
+ b3 ln x3 |
H ( * |
|||||||||
x2 |
||||||||||||
|
|
|
|
|
|
|
|
? (** " *
R2 = 1 − S2 , Sy2
Sy2=(Y −ys)T (Y −ys)= yi−y2 ; " y S2 =eT e= (yi−yˆi)2 ; "
" * (**
" R2=rxy2
A ( (** " ) *
8 " * (** " ! (

" "$
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ρ = √ |
|
|
− Sy2 |
|
|
− (yi |
|
y)2 |
|
||||||||
|
= 1 |
|
S2 |
|
|
|
|
(yi−yˆi)2 |
. |
|
|||||||
R2 |
|
|
|
= |
1 |
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
− |
|
|
|
|
|
? " E , F , |
|||||||||||||||||
" * |
|
||||||||||||||||
" * |
|
|
|
|
|
|
|
|
|
|
|
|
|
& " * " yˆ=abxε " ln yˆ=ln y = ln a+x ln b+ ln ε (** "
R2 = ρ2 = 1 − (yi−yˆi)2 ,
(yi−y)2
yˆi = eln y " " ln yˆi
(** : " " "
!anti ln yˆi$
= 6 )
F " "
! : $
, %
" (** " @ " *
" (
: "
- > " (** " rxy =ryx !
x y y x$ " " (
F ( " "
* @ " " " "
!R2$ " (** "
* !R2$ F ( ) "
" * |
" R2−R2 |
|||||||||||
) E , * ? |
||||||||||||
" : " |
(** |
|||||||||||
C |
|
|
||||||||||
? " H0 R2=R2 ! $ ? |
||||||||||||
" " |
|
|
|
|
|
|
R2−R2 |
|
|
|||
|
|
|
|
|
|
|
|
t = |
|
, |
|
|
|
|
|
|
|
|
|
|
σ|R −R | |
||||
|
|
|
|
|
|
|
|
|
|
|
||
σ |
|
| |
; ) |
R2 R2 " " * |
||||||||
|R |
−R |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
σ2 |
|
| |
= 4 |
(R2 − R2) − (R2 − R2)2 · (2 − (R2 + R2)) |
. |
||||
|
|
|
|R |
−R |
|
|
|
|
n |
C n " (
" " t =t(α, n) > |t|<t
" " p=1−α *