
- •М.А.Андриянова, м.А.Князева
- •Учебное пособие
- •Часть 2
- •Тема 1.Базы данных 7
- •Тема 2.Модели и моделирование 23
- •Тема 3.Компьютерные сети 39
- •Тема 4.Информационная безопасность 77
- •Тема 5.Искусственный интеллект 84
- •Предисловие
- •Тема 1.Базы данных
- •1.1.Основные понятия баз данных
- •1.2.Виды моделей бд
- •1.2.1.Иерархическая модель данных
- •1.2.2.Сетевая модель данных
- •1.2.3.Реляционная модель данных
- •1.3.Классификация баз данных
- •1.4.Проектирование реляционной бд
- •1.4.1.Требования к бд
- •1.4.2.Трехуровневая архитектура представления данных
- •1.4.3.Средства представления инфологической модели данных
- •1.4.4.Нормализация отношений
- •Первая нормальная форма
- •Вторая нормальная форма
- •Третья нормальная форма
- •1.5.Основы использования языка sql
- •1.5.1.Язык Описания Данных
- •1.6.Язык Манипулирования Данными
- •1.7.Тесты для самопроверки
- •2.1.Ключевые этапы моделирования
- •2.2.Обобщённая классификация моделей
- •2.2.1.Категориальные модели
- •2.2.2.Модели, фиксирующие особенности свойств оригинала
- •2.2.3.Природа моделей
- •2.2.4.Основания для перехода от модели к оригиналу
- •2.3.Классификация математических моделей
- •2.3.1.Модели, определяемые методом получения результата
- •2.3.2.Модели, определяемые инструментальной средой моделирования
- •2.4.Тесты для самопроверки
- •3.2.Топология компьютерных сетей
- •3.3.Структура вычислительной сети
- •3.3.1.Компьютеры
- •3.3.2.Каналы передачи данных
- •3.3.3.Устройства сопряжения эвм с аппаратурой передачи данных
- •3.3.4.Устройства межсетевого интерфейса
- •3.3.5.Устройства коммутации
- •3.3.6.Методы доступа к каналам связи
- •3.4.Локальные сети
- •3.5.Организация работы в локальной сети
- •3.5.1.Сеть с файловым сервером
- •3.5.2.Одноранговая сеть
- •3.5.3.Модель открытой системы взаимодействия
- •3.6.Возможности сети Интернет
- •3.6.1.Программное обеспечение работы в Интернет
- •3.6.2.Адресация и протоколы в Интернет
- •3.7.Службы Интернета
- •3.7.1.Терминальный режим
- •3.7.2.Всемирная паутина, или WorldWideWeb
- •3.7.3.Служба Gopher
- •3.7.4.Файловые информационные ресурсы ftp
- •3.7.5.Электронная почта (e-mail)
- •3.7.6.Списки рассылки (Mail List)
- •3.7.7.Новости, или конференции
- •3.7.8.Передача разговоров по Интернету
- •3.7.9.Многопользовательские области, или Игры в Internet
- •3.7.10.Радиовещание Интернет (Internet Talk Radio)
- •3.7.11.Базы данных wais
- •3.8.Сетевая операционная система (сос)
- •3.8.1.Сетевая операционная система aix
- •3.8.2.Сетевая операционная система Cairo
- •3.8.3.Сетевая операционная система Dayton
- •3.8.4.Сетевая операционная система lan Server
- •3.8.5.Сетевая операционная система NetWare
- •3.8.6.Сетевая операционная система vines
- •3.8.7.Сетевая операционная система Windows 95
- •3.8.8.Сетевая операционная система Windows nt*
- •3.8.9.Сетевая операционная система Windows ntas
- •3.8.10.Операционная система unix
- •3.9.Тесты для самопроверки
- •6. Какой домен обозначает образовательные структуры?
- •4.2.Объекты и элементы защиты в компьютерных системах обработки данных
- •4.3.Средства опознания и разграничения доступа к информации
- •4.4.Криптографический метод защиты информации
- •4.5.Компьютерные вирусы и антивирусные программные средства
- •4.6.Защита программных продуктов
- •4.7.Обеспечение безопасности данных на автономном компьютере
- •4.8.Безопасность данных компьютерных сетей
- •4.9.Тесты для самопроверки
- •5.2.Типичные модели представления знаний
- •5.2.1.Логическая модель представления знаний
- •5.2.2.Представление знаний правилами продукций
- •5.2.3.Объектно-ориентированное представление знаний фреймами
- •5.2.4.Модель семантической сети
- •5.3.Эволюционные аналогии в искусственных интеллектуальных системах
- •5.4.Тесты для самопроверки
- •Информатика
- •Часть 2
- •300600, Г. Тула, пр. Ленина, 92
- •300600, Г. Тула, ул. Болдина, 151
5.2.4.Модель семантической сети
Общепринятого определения семантической сети не существует. Обычно под ней подразумевают систему знаний некоторой предметной области, имеющую определенный смысл в виде целостного образа сети, узлы которой соответствуют понятиям и объектам, а дуги — отношениям между объектами. При построении семантической сети отсутствуют ограничения на число связей и на сложность сети. Для того чтобы формализация оказалась возможной, семантическую сеть необходимо систематизировать. Семантические сети Куиллиана систематизируют функции отношений между понятиями с помощью следующих признаков:
множество — подмножество (типы отношений «абстрактное —конкретное», «целое — часть», «род — вид»);
индексы (свойства, имена прилагательные в языке и т.п.);
конъюнктивные связи (логическое И);
дизъюнктивные связи (логическое ИЛИ);
связи по ИСКЛЮЧАЮЩЕМУ ИЛИ;
отношения «близости»;
отношения «сходства — различия»;
отношения «причина — следствие» и др.
При построении семантической сети отсутствуют ограничения на число элементов и связей. Поэтому систематизация отношений между объектами в сети необходима для дальнейшей формализации. Пример семантической сети представлен на рисунке 30.
Систематизация отношений конкретной семантической сети зависит от специфики знаний предметной области и является сложной задачей. Особого внимания заслуживают общезначимые отношения, присутствующие во многих предметных областях. Именно на таких отношениях основана концепция семантической сети. В семантических сетях, так же как при фреймовом представлении знаний, декларативные и процедурные знания не разделены, следовательно, база знаний не отделена от механизма вывода. Процедура логического вывода обычно представляет совокупность процедур обработки сети.
Семантические сети получили широкое применение в системах распознавания речи и экспертных системах.
5.3.Эволюционные аналогии в искусственных интеллектуальных системах
Эволюционное моделирование можно определить как воспроизведение процесса естественной эволюции с помощью специальных компьютерных программ. К факторам, определяющим неизбежность эволюции, относятся:
наследственная изменчивость как предпосылка эволюции, ее материал;
борьба за существование как контролирующий и направляющий фактор;
естественный отбор как преобразующий фактор.
На рисунке 31 приведена конкретизация факторов эволюции, учитывающая многообразие форм их проявления, взаимосвязей и взаимовлияния. Главные факторы выделены пунктиром.
Современная теория эволюции базируется на теории общей и популяционной генетики. Элементарным объектом эволюции является популяция — сообщество свободно скрещивающихся особей. В популяциях происходят микроэволюционные процессы, приводящие к изменению их генофонда. Преобразования генетического состава популяции происходят под действием элементарных эволюционных факторов. Случайные структурные или функциональные изменения в генах, хромосомах и других воспроизводимых единицах называют мутациями, если они приводят к наследственному изменению какого-либо фенотипического признака особи.Хромосомы — это специфические структуры клеточного ядра, которые играют важнейшую роль в процессах деления клеток. Хромосомы состоят из генов.Геном называется реально существующая, независимая, комбинирующаяся и расщепляющаяся при скрещиваниях единица наследственности.
Преобразования генофонда популяции происходят под управлением естественного отбора.
Эволюция —это многоэтапный процесс возникновения органических форм с более высокой степенью организации, который характеризуется изменчивостью самих эволюционных механизмов.
К основным направлениям развития эволюционного моделирования на современном этапе относятся следующие:
генетические алгоритмы (ГА), предназначенные для оптимизации функций дискретных переменных и использующие аналогии естественных процессов рекомбинации и селекции;
классифицирующие системы (КС), созданные на основе генетических алгоритмов, которые используются как обучаемые системы управления;
генетическое программирование (ГП), основанное на использовании эволюционных методов для оптимизации создаваемых компьютерных программ;
эволюционное программирование (ЭП), ориентированное на оптимизацию непрерывных функций без использования рекомбинаций;
эволюционные стратегии (ЭвС), ориентированные на оптимизацию непрерывных функций с использованием рекомбинаций.
Эволюционные методы целесообразно использовать в тех случаях, когда прикладную задачу сложно сформулировать в виде, позволяющем найти аналитическое решение, или тогда, когда требуется быстро найти приближенный результат, например, при управлении системами в реальном времени.