
- •Федеральное агентство по образованию рф
- •Гоу впо «Тульский государственный университет»
- •Кафедра физики металлов и материаловедения
- •Введение
- •1.Атомно-кристаллическая структура металлов
- •1.1. Классификация металлов
- •1.2.Кристаллическое строение металлов
- •1.3.Кристаллические решетки металлов
- •1.4.Реальное строение металлических кристаллов
- •2.Кристаллизация
- •2.1.Три состояния вещества. Энергетические условия процесса кристаллизации
- •2.2.Строение металлического слитка
- •2.3.Полиморфные превращения
- •3.Пластическая деформация и механические свойства
- •3.1.Виды напряжений
- •3.2.Упругая и пластическая деформация
- •3.4.Изменение структуры металлов при пластической деформации. Текстура деформации. Наклеп
- •3.5.Разрушение металлов
- •3.6.Пути повышения прочности, и пластичности, металла
- •3.7. Механические свойства при статических испытаниях
- •4.Фазы в металлических сплавах
- •4.1.Твердые растворы
- •4.2.Химические соединения
- •4.3.Фазы внедрения.
- •4.4.Электронные соединения.
- •5.Диаграммы состояния сплавов. Правило фаз
- •5.1.Термины и определения
- •5.2.Диаграммы состояния двойных сплавов
- •5.2.1.Диаграмма состояния сплавов, образующих механическую смесь компонентов.
- •5.2.2.Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии
- •5.2.3.Диаграммы состояния сплавов, образующих ограниченные растворы и эвтетику
- •5.2.4.Диаграмма состояния сплавов, образующих ограниченные растворы и перитектику
- •5.2.5.Диаграмма состояния сплавов ,образующих химическое соединение
- •6.Диаграмма состояния железо-цементит:
- •6.1.Кристаллизация стали .
- •6.2.Перекристаллизация стали (превращения в твердом состоянии).
- •7.Кристаллизация и перекристаллизация чугунов
- •7.1.Белые чугуны
- •7.2.Серые чугуны
- •7.3.Влияние примесей.
- •8.1.Теория превращения в стали при нагреве и охлаждении.
- •8.2. Классификация видов термической обработки.
- •8.3.Превращение при нагреве
- •8.4.Превращение аустенита при охлаждении (перлитное превращение).
- •8.5.Особенности превращения перлита в до-и заэвтектоидных сталях.
- •8.6.Промежуточное превращение.
- •8.6. Мартенситное превращение.
- •8.7.Отпуск закаленной стали (превращение мартенсита и остаточного аустенита при нагреве).
- •8.8.Технология термической обработки стали.
- •9.Химико-термическая обработка сталей.
- •9.1.Общие положения.
- •9.2.Цементация сталей.
- •9.3.Азотирование стали.
- •9.4.Нитроцементация и цианирование стали.
- •9.5.Термохимическая обработка
- •10.Общая характеристика легированных сталей
- •10.1.Классификация примесей
- •10.2.Классификация сталей.
- •10.3.Обозначение марок легированной сталей.
- •10.4.Классификация сталей по назначению
- •10.4.1.Конструкционные стали
- •Улучшаемые (среднеуглеродистые) стали
- •10.4.2.Инструментальные стали
- •10.4.3.Стали с особыми свойствами
- •11.Цветные металлы и сплавы
- •11.1.Алюминий и его сплавы
- •11.2. Медь и ее сплавы
- •11.3. Антифрикционные сплавы
- •12.Защитные покрытия на металлах и сплавах
- •12.1.Оксидные покрытия
- •12.1.2.Оксидные покрытия на алюминии
- •12.1.2.Оксидирование цветных, тугоплавких металлов и сплавов
- •12.2.Коррозионные покрытия на основе цинка
- •12.2.1.Горячее цинкование.
- •12.3.Структура и свойства органосиликатных покрытий
- •12.3.2.Лакокрасочные покрытия
- •12.4.Диспесноупрочненные покрытия
- •12.5.Перспективы применения новых материалов и способы их создания
- •13.Неметалические материалы, их свойства и области применения
9.3.Азотирование стали.
Насыщение стали азотом называется азотированием. Азотирование также, как и цементация является методом поверхностного упрочнения стали. Однако по сравнению с цементацией азотирование имеет ряд преимуществ:
1. Более высокая поверхностная твердость, которая сохраняется при нагреве до высоких температур (600-650°С), тогда как твердость цементованного слоя с мартенситной структурой сохраняется только до 200-250 °С ;
2. Большая устойчивость против износа, действия знакопеременных нагрузок;
3. Сопротивление коррозии в атмосфере, в воде, паре;
4. Меньшая деформация и коробление;
5. Не требует последующей термической обработки;
Недостатком азотирования является значительно большая продолжительность процесса, т.к. оно проводится в основном для легированных сталей и при более низких температурах по сравнению с цементацией. Азотирование широко применяется для шестерен, цилиндров мощных двигателей, многих деталей станков, втулок насосов и др. Азотирование чаще всего проводят в атмосфере аммиака NH3, который при повышенных температурах диссоциирует с образованием активных атомов азота.
2 NH3 —> 2N (атом) + 6Н
Атомы азота адсорбируются поверхностью стали диффундируют вглубь, образуя железистоазотистые фазы.
В системе Fe - N возможно образование следующих фаз:
α- азотистый феррит 0,42 %N при 590° и 0,01%N при 20° ;
γ- азотистый аустенит существует при t > 590 ° ;
γ‘ - нитрид Fe4 N, содержащий 5,7%N;
ε - нитрид Fe2 N, содержащий от 8,1 до 11,1% N.
Если проводить азотирование при t1 < 5900 С, то в поверхностном слое будут образовываться фазы, соответствующие диаграмме Fe-N.
Таким образом, структура поверхностного слоя после такого азотирования состоит из ε- фазы, несколько ниже γ и α- фазы. При температуре азотирования t2 >590° на поверхности возникает α-фаза, а затем при достижении предела ее насыщения образуется γ- фаза, после насыщения которой на поверхности появляется γ ' (Fe4 N) и, наконец, ε фаза. При медленном охлаждении с t2 до комнатной γ - фаза претерпевает эвтектоидное превращение: γ (γ + α ) эвтектоид, а ε и α фазы выделяют избыточную γ ' фазу (Fe4 N ). Распределение концентрации азота по глубине диффузного слоя при t2 представлено на рис. 9.4.
Основные цели азотирования:
повышение твердости, износостойкости поверхности;
повышение усталостной прочности;
повышение сопротивления коррозии.
От цели азотирования зависит выбор режима процесса, а от последнего глубина и состав азотированного слоя. Различают упрочняющее азотирование и антикоррозионное.
Упрочняющее азотирование.
При насыщении железа азотом не наблюдается повышение твердости; поэтому чистое железо не подвергают азотированию. При насыщении азотом стали на поверхности образуется карбонитридные фазы Fe4 (N,C), Fe3 (N,C) и Fe2 (N,C). Азот образует нитриды со многими легирующими элементами (Мn, Сг, Ti, A1, V, Мо, Zr и др.) Дисперсные твердые нитриды легирующих элементов (VN, Cr2N и др.) препятствуют движению дислокации и тем самым повышают твердость и прочность азотированного слоя (рис.81).
При низких температурах азотирования в твердом растворе образуется сегрегация азота, при более высокой температуре дисперсные нитриды. Наиболее сильно упрочняют при азотировании нитриды A1, Сг, Мо, V (рис.9.5,а). Упрочняющему азотированию подвергают сталь со средним содержанием углерода 0,25-0,4% С. Наибольшее упрочнение вызывает азотирование сталей, легированных Сг, A1, Ti, Мо, и др.
Если от азотированного слоя требуется высокая твердость и износостойкость, то применяют сталь типа нитралоя, легированные молибденом и алюминием.
Технологический процесс изготовления детали из стали типа нитралой предусматривает:
1.Предварительную термическую обработку (улучшение) для повышения прочности и вязкости сердцевины деталей: 1зак. = 900-950°С охлаждение в масле, высокий отпуск при t = 600-675°С, превышающий температуру азотирования;
2.Механическую обработку деталей, вплоть до шлифования;
3.Защиту от азотирования отдельных частей детали, не подлежащих азотированию, оловом (0,01 -0,015мм) или жидким стеклом;
4. Азотирование при t = 500-520°С, время выдержки для получения δ = 0,3-0.6мм от 24 до 90 часов;
5. Окончательное шлифование.
Чем выше температура азотирования, тем ниже твердость азотированного слоя, что вызвано коагуляцией нитридов легирующих элементов.
Для ускорения процесса азотирования проводят ступенчатое азотирование: 1-я стадия при t = 500-520°С, 2-я стадия при 540-600°С. Повышение температуры азотирования вызывает увеличение деформации, без существенного понижения твердости, значительно (в 2-3 раза) сокращается общее время при азотировании в тлеющем разряде (ионное азотирование), увеличивается в 1,5 раза скорость азотирования под влиянием ультразвука.
Антикоррозийное азотирование.
Для повышения сопротивления коррозии стальных деталей на поверхности необходимо получить беспористый, не травящийся, антикоррозийный слой фазы (0,01-0,03мм), который стоек в атмосфере, бензине, слабых щелочных растворах. Азотирование в этом случае проводят при t = 600-700°С, продолжительность процесса 0,5-1,5 часа. Оно тоже повышает твердость, предел прочности и выносливости. Однако при этом не предъявляются высокие требования к механическим свойствам, поэтому антикоррозийное азотирование проводится при более высокой температуре и на любых сталей, даже обычных углеродистых. В зависимости от условий протекания процесса различают газовое и жидкостное азотирование. Азотирование в жидких средах называют тенифер-процесс и проводится в расплавах 40% KNC + 60% NaCN,t = 550-570°С, t = 0,5-0,3 часа. При продувании сухого воздуха на поверхности образуется 7-15мкм слой карбонитридов Fе3(CN) с высоким сопротивлением износу. Преимущество метода незначительное изменение размеров, а недостаток: токсичность и высокая стоимость цианистых солей. Контроль качества азотирования осуществляется по твердости, по глубине слоя на образцах-свидетелях, внешним осмотром поверхности азотирования.