
- •Содержание
- •Предисловие
- •Области применения компьютерной графики
- •Цифровое представление графики
- •Основные операции над графическими объектами
- •История компьютерной графики
- •Развитие аппаратных и программных средств
- •Применение в кинематографе
- •Технические средства компьютерной графики: мониторы, графические адаптеры, плоттеры, принтеры, сканеры
- •Устройства вывода. Экраны
- •Устройства вывода твердых копий
- •Устройства ввода. Сканеры
- •Устройства ввода. Цифровые фотоаппараты
- •Устройства координатного ввода
- •Свойства растровых изображений
- •Форматы хранения графической информации
- •Цветовые модели растровых изображений
- •Системы координат, типы преобразований графической информации
- •Проблемы геометрического моделирования
- •Понятие однородных координат
- •Геометрические операции над моделями
- •Виды геометрических моделей их свойства, параметризация моделей
- •Поверхностные модели
- •Аналитические поверхности
- •Составные поверхности
- •Параметризация моделей
- •2D и 3d моделирование в рамках графических систем
- •Методы построения 3Dтел
- •Анализ твердотельных моделей
- •Алгоритмы визуализации: отсечения, развертки, удаления невидимых линий и поверхностей, закраски
- •Полигональная визуализация и линии очерка
- •7Рис. 8.59 – Тор (а), параллельная (б) и центральная (в) проекции его линий очерка.
- •Основные растровые алгоритмы
- •Удаление скрытых линий
- •Способы создания фотореалистических изображений
- •Тенденции построения современных графических систем: графическое ядро, приложения, инструментарий для написания приложений
- •Понятие конвейеров ввода и вывода графической информации
- •Cтандарты в области разработки графических систем
- •Библиотека DirectX
- •Графические процессоры, аппаратная реализация графических функций
- •3D акселерация
- •Компьютерная анимация
- •Принципы создания анимации
- •Классификация и обзор современных графических систем
- •Основные функциональные возможности современных графических систем
- •Графические системы класса 2d
- •Графические системы класса 3d
- •Принципы построения “открытых” графических систем
- •Организация диалога в графических системах
- •Предметный указатель
- •Список литературы
Основные операции над графическими объектами
Под масштабированием(scaling) понимается пропорциональное изменение размеров изображения как в сторону увеличения, так и в сторону уменьшения (Рис. 1 .4).
| ||
а) исходное изображение |
б) масштаб 2:1 |
в) масштаб 1:2 |
Рис. 1.4 – Масштабирование изображений.
Следует помнить, что при черчении масштаб изображения нельзя брать произвольно – он должен браться из установленного в ЕСКД ряда 1; 2; 2,5; 4; 5; 10; 15; 20; 25; 40; 50; 75; 100; 200; 400; 500; 800; 1000.
Легкость редактирования векторных изображений связана с тем, что они четко разделены на ряд объектов, у каждого из которых можно поменять описывающие его параметры. Например, для переноса отрезка вдоль оси Хна расстояниеdдостаточно прибавить величинуdк абсциссам его концов. В случае же с растровым представлением тот же отрезок оказывается "рассыпанным" на большое количество не связанных между собой пикселов и перенести его оказывается фактически невозможно (Рис. 1 .5).
|
|
а) перенос векторного отрезка |
б) перенос растрового отрезка |
Рис. 1.5 – Редактирование векторных (а) и растровых (б) изображений.
Векторное изображение приходится тем или иным способом создавать на компьютере. Если у вас имеется чертеж, выполненный на бумаге, его можно отсканировать, но в результате получится растровое представление, качественно перевести которое в векторное практически невозможно. Это еще одно фундаментальное свойство двух рассматриваемых представлений: векторное изображение легко перевести в растровое, а вот растровое в векторное – крайне сложно.
Очевидно, что векторное представление малопригодно для изображений типа фотографий с большим количеством заливок и плавных переходов цвета, зато оно идеально подходит для чертежей, схем и т.п.
Главные недостатки растрового представления, помимо уже отмеченной трудности редактирования – большой объем занимаемой памяти и резкая потеря качества при масштабировании. Для цифровой обработки растровых изображений требуются мощные компьютеры, причем объем оперативной памяти здесь более важен, чем быстродействие процессора. Файлы же с растровыми изображениями могут занимать сотни мегабайт.
История компьютерной графики
Цифровая обработка изображений не входила в число задач, решавшихся на первых электронных компьютерах в 40-50е годы ХХ века. В то время отсутствовали надлежащие устройства вода и вывода графической информации, да и технические параметры вычислительной техники не позволяли организовать эффективную работу с изображениями.
Мощный импульс развитию средств компьютерной графики дала программа лунных экспедиций Apollo(1961-1972). Для тренировки астронавтов было необходимо на тренажере воспроизвести условия посадки на Луну с учетом освещения, углов обзора, лунного пейзажа. Для решения этой задачи и были созданы первые системы компьютерной графики. Компьютеры того времени все же не позволяли обеспечить полную имитацию обстановки, поэтому часть изображения создавалась обычными телекамерами. Компьютерная графика также широко применялась при передаче телевизионных изображений с межпланетных станций. Уже в 1968 на станцииMariner9 была установлена компьютерная сканирующая система для передачи изображения поверхности Марса.