
Лоренц Хенрик Антон (1853 - 1928) - Нидерландский физик-теоретик
Хендрик Антон Лоренц, голландский физик, родился 18.07.1853 года в Арнхеме (Нидерланды). Мать мальчика умерла, когда ему исполнилось четыре года. Лоренц отлично учился в средней школе Арнхема и имел отличные оценки по всем предметам. В 1870 г. он поступил в Лейденский университет, где познакомился с профессором астрономии Фредериком Кайзером, чьи лекции по теоретической астрономии заинтересовали его. Менее чем за два года Л. стал бакалавром наук по физике и математике. Возвратившись в Арнхем, он преподавал в местной средней школе и одновременно готовился к экзаменам на докторскую степень, которые он отлично сдал в 1873 г. Через два года Л. успешно защитил в Лейденском университете диссертацию на соискание ученой степени доктора наук. Диссертация была посвящена теории отражения и преломления света. В ней Л. исследовал некоторые следствия из электромагнитной теории Джеймса Клерка Максвелла относительно световых волн. Диссертация была признана выдающейся работой.
Хендрик Антон Лоренц продолжал преподавать в местной средней школе, когда в 1878 году он был назначен на работу на кафедру теоретической физики Лейденского университета.
Кафедра в Лейдене была одной из первых в Европе. Новое назначение как нельзя лучше соответствовало вкусам и наклонностям Лоренца, который обладал особым даром формулировать теорию и применять изощренный математический аппарат к решению физических проблем.
Продолжая заниматься исследованием оптических явлений, Хендрик Антон Лоренц в 1878 г. опубликовал работу, в которой теоретически вывел соотношение между плотностью тела и его показателем преломления (отношением скорости света в вакууме к скорости света в теле – величине, характеризующей, насколько сильно отклоняется от первоначального направления луч света при переходе из вакуума в тело). Получилось так, что несколько раньше ту же формулу опубликовал датский физик Людвиг Лоренц, поэтому она получила название формулы Лоренца – Лоренца. Однако работа Хендрика Лоренца представляет особый интерес потому, что основана на предположении, согласно которому материальный объект содержит колеблющиеся электрически заряженные частицы, взаимодействующие со световыми волнами. Эта мысль подкрепила отнюдь не общепринятую тогда точку зрения на то, что вещество состоит из атомов и молекул.
С 1880 г. научные интересы Лоренца были связаны, в основном, с кинетической теорией газов, описывавшей движение молекул и установление соотношения между их температурой и средней кинетической энергией. В 1892 г. Лоренц приступил к формулированию теории, которую как сам он, так и другие впоследствии назвали теорией электронов. Электричество, утверждал Лоренц, возникает при движении крохотных заряженных частиц – положительных и отрицательных электронов. Позднее было установлено, что все электроны отрицательно заряжены. Лоренц считал, что колебания этих крохотных заряженных частиц порождают электромагнитные волны, в том числе световые и радиоволны, предсказанные Максвеллом и открытые Генрихом Герцем в 1888 г. В 1890-е гг. Лоренц продолжил занятия теорией электронов. Он использовал ее для унификации и упрощения электромагнитной теории Максвелла, опубликовал серьезные работы по многим проблемам физики, в том числе о расщеплении спектральных линий в магнитном поле.
Когда свет от раскаленного газа проходит через щель и разделяется спектроскопом на составляющие частоты, или чистые цвета, возникает линейчатый спектр – серия ярких линий на черном фоне, положение которых указывает соответствующие частоты. Каждый такой спектр характерен для вполне определенного газа. Лоренц предположил, что частоты колеблющихся электронов определяют частоты в испускаемом газом свете. Кроме того, он выдвинул гипотезу о том, что магнитное поле должно сказываться на движении электронов и слегка изменять частоты колебаний, расщепляя спектр на несколько линий. В 1896 г. коллега Лоренца по Лейденскому университету Питер Зееман поместил натриевое пламя между полюсами электромагнита и обнаружил, что две наиболее яркие линии в спектре натрия расширились. После дальнейших тщательных наблюдений над пламенем различных веществ Зееман подтвердил выводы теории Лоренца, установив, что расширенные спектральные линии в действительности представляют собой группы из близких отдельных компонент. Расщепление спектральных линий в магнитном поле получило название эффекта Зеемана. Зееман подтвердил и предположение Лоренца о поляризации испускаемого света.
Хотя эффект Зеемана не удалось полностью объяснить до появления в XX в. квантовой теории, предложенное Лоренцем объяснение на основе колебаний электронов позволило понять простейшие особенности этого эффекта. В конце XIX в. многие физики считали (как выяснилось впоследствии, правильно), что спектры должны стать ключом к разгадке строения атома. Поэтому применение Лоренцем теории электронов для объяснения спектрального явления можно считать необычайно важным шагом на пути к выяснению строения вещества. В 1897 г. Дж.Дж. Томсон открыл электрон в виде свободно движущейся частицы, возникающей при электрических разрядах в вакуумных трубках. Свойства открытой частицы оказались такими же, как у постулированных Лоренцем электронов, колеблющихся в атомах.
Лоренц совместно с Зееманом был удостоен Нобелевской премии по физике 1902 г. «в знак признания выдающегося вклада, который они внесли своими исследованиями влияния магнетизма на излучения».
В конце XIX – начале XX в. Лоренц считался ведущим физиком-теоретиком мира. Работы Лоренца охватывали не только электричество, магнетизм и оптику, но и кинетику, термодинамику, механику, статистическую физику и гидродинамику. Его усилиями физическая теория достигла пределов, возможных в рамках классической физики. Идеи Лоренца оказали влияние на развитие современной теории относительности и квантовой теории.
В 1904 г. Лоренц опубликовал наиболее известные из выведенных им формул, получившие название преобразований Лоренца. Они описывают сокращение размеров движущегося тела в направлении движения и изменение хода времени. Оба эффекта малы, но возрастают, если скорость движения приближается к скорости света. Эту работу он предпринял в надежде объяснить неудачи, постигавшие все попытки обнаружить влияние эфира – загадочного гипотетического вещества, якобы заполняющего все пространство.
Преобразования Л. оказали большое влияние на дальнейшее развитие теоретической физики в целом и в частности на создание в следующем году Альбертом Эйнштейном специальной теории относительности.
О высоком авторитете Лоренца среди коллег свидетельствует то, что по их просьбе он в 1911 г. стал председателем первой Сольвеевской конференции по физике – международного форума самых известных ученых – и ежегодно, до самой смерти, выполнял эти обязанности.
В 1912 г. Лоренц ушел в отставку из Лейденского университета с тем, чтобы уделять большую часть времени научным исследованиям, но раз в неделю он продолжал читать лекции. Переехав в Гарлем, Лоренц принял на себя обязанности хранителя физической коллекции Музея гравюр Тейлора. Это давало ему возможность работать в лаборатории. В 1919 г. Л. принял участие в одном из величайших в мире проектов предупреждения наводнений и контроля за ними. Он возглавил комитет по наблюдению за перемещениями морской воды во время и после осушения Зюйдерзее (залива Северного моря). После окончания первой мировой войны Лоренц активно способствовал восстановлению научного сотрудничества, прилагая усилия к тому, чтобы восстановить членство граждан стран Центральной Европы в международных научных организациях. В 1923 г. он был избран в международную комиссию по интеллектуальному сотрудничеству Лиги Наций. В состав этой комиссии входили семь ученых с мировым именем. Через два года Л. стал ее председателем. Л. сохранял интеллектуальную активность до самой смерти, последовавшей 4 февраля 1928 г. в Харлеме, (Нидерланды).