
- •Министерство образования и науки российской федерации
- •Содержание
- •Лекция 1 Введение
- •Историческая справка
- •Области, основные разделы и направления электроники
- •Перспективы развития электроники
- •Лекция 2 Классификация электронных полупроводниковых приборов. Группы диодов
- •Примеры обозначения приборов:
- •Транзисторы Лекция 3 Биполярные транзисторы
- •Лекция 4 Полевые транзисторы
- •Лекция 5 Общая характеристика и принцип действия тиристоров
- •Классификация и система обозначений тиристоров
- •Лекция 6 Общая характеристика и принцип действия оптоэлектронных приборов
- •Излучающий диод (светодиод)
- •Фоторезистор
- •Фотодиод
- •Оптрон (оптопара)
- •Фототранзистор и фототиристор
- •Усилители Лекция 7
- •7.1. Основные характеристики усилителей
- •7.2. Обратная связь в усилителях
- •7.3. Усилители на биполярных транзисторах
- •7.4. Усилители на полевых транзисторах
- •Лекция 8 Операционные усилители
- •Лекция 9 Основные виды схем на основе операционных усилителей
- •Инвертирующий усилитель на основе оу
- •Неинвертирующий усилитель на основе оу
- •Повторитель напряжения на основе оу
- •Сумматор напряжения (инвертирующий сумматор)
- •Вычитающий усилитель (усилитель с дифференциальным входом)
- •Схемы с диодами и стабилитронами на основе оу
- •Лекция 10 Усилители постоянного тока
- •Дифференциальный усилитель на биполярных транзисторах
- •Усилитель постоянного тока с модуляцией и демодуляцией (усилитель типа мдм)
- •Услители мощности (мощные выходные усилители)
- •Трансформаторные усилители мощности
- •Бестрансформаторные усилители мощности
- •Лекция 11 генераторы Генераторы гармонических сигналов
- •Импульсные генераторы
- •Лекция 12 Вторичные источники питания
- •Лекция 13 Фильтры
- •Классификация фильтров по виду их амплитудно-частотных характеристик
- •Классификация фильтров по передаточным функциям
- •Активные фильтры
- •Лекция 14 Устройства цифровой и импульсной техники
- •Транзисторные ключи
- •Логические элементы
- •Лекция 15 Основные виды устройств на базе цифровой электроники
- •Последовательностные цифровые устройства
- •Лекция 16 Запоминающие устройства на основе цифровых электронных приборов
- •Лекция 17 Преобразователи сигналов
- •Цифроаналоговые преобразователи
- •Аналого-цифровые преобразователи
- •Список литературы Основная литература
- •Дополнительная литература
- •Периодические издания
Лекция 13 Фильтры
Фильтром называют устройство, которое передает (пропускает) синусоидальные сигналы в одном определенном диапазоне частот (в полосе пропускания) и не передает (задерживает) их в остальном диапазоне частот (в полосе задерживания). Фильтры используют для передачи не только синусоидальных сигналов, но, определяя полосы пропускания и задерживания, ориентируются именно на синусоидальные сигналы. Зная, как фильтр передает синусоидальные сигналы, обычно достаточно легко определить, как он будет передавать сигналы и другой формы.
В устройствах электроники, широко использующих фильтры, различают аналоговые и цифровые фильтры. В аналоговых фильтрах обрабатываемые сигналы не преобразуют в цифровую форму, а в цифровых фильтрах перед обработкой сигналов осуществляют такое преобразование.
Аналоговые фильтры строят на основе как пассивных элементов (конденсаторов, катушек индуктивности, резисторов), так и активных элементов (транзисторов, операционных усилителей). Для аналоговой фильтрации широко используют также электромеханические фильтры: пьезоэлектрические и механические. В пьезоэлектрических фильтрах используют естественный и искусственный кварц, а также пьезокерамику. Основу механического фильтра составляет то или иное механическое устройство.
Важно различать требования, предъявляемые к фильтрам силовой и информативной (информационной) электроники. Фильтры силовой электроники должны иметь как можно больший коэффициент полезного действия. Для них очень важной является проблема уменьшения габаритных размеров. Такие фильтры строятся на основе только пассивных элементов. К фильтрам силовой электроники относятся сглаживающие фильтры выпрямителей, проходные фильтры силовых трансформаторов и т. д.
Фильтры информативной электроники чаще разрабатывают при использовании активных элементов. При этом широко используют операционные усилители.
Фильтры, содержащие активные элементы, называют активными. В современных конструкциях фильтров обычно не используют катушки индуктивности из-за их больших габаритов и высокой трудоемкости изготовления. Поэтому активные фильтры могут быть изготовлены с применением технологии интегральных микросхем. Нередко активные фильтры оказываются дешевле соответствующих фильтрах на пассивных элементах и занимают меньшие объемы. Активные фильтры способны усиливать сигнал, лежащий в полосе пропускания. Во многих случаях их достаточно легко настроить.
К недостаткам активных фильтров можно отнести:
использование источника питания;
невозможность работы на таких высоких частотах, на которых используемые операционные усилители уже не способны усиливать сигнал.
Классификация фильтров по виду их амплитудно-частотных характеристик
Фильтры нижних частот.Для фильтров нижних частот (ФНЧ) характерно то, что входные сигналы низких частот, начиная с постоянных сигналов, передаются на выход, а сигналы высоких частот задерживаются. На рис. 13.1,апоказана характеристика идеального (не реализуемого на практике) фильтра (ее иногда называют характеристикой типа «кирпичная стена»). На других рисунках представлены характеристики реальных фильтров.
Рис. 13.1.Амплитудно-частотные характеристики
фильтров нижних частот
Полоса пропускания лежит в пределах от нулевой частоты до частоты среза ωс. Обычно частоту среза определяют как частоту, на которой величина А(ω) равна 0,707 от максимального значения (т. е. меньше максимального значения на 3дБ).
Полоса задерживания (подавления) начинается от частоты задерживания ωз и продолжается до бесконечности. В ряде случаев частоту задерживания определяют как частоту, на которой величина А(ω) меньше максимального значения на 40дБ(т. е. меньше в 100 раз).
Между полосами пропускания и задерживания у реальных фильтров расположена переходная полоса. У идеального фильтра переходная частота отсутствует.
Фильтры верхних частот.Фильтр верхних частот характерен тем, что он пропускает сигналы верхних и задерживает сигналы нижних частот.
На рис. 13.2,априведена идеальная (нереализуемая) амплитудно-частотная характеристика фильтра нижних частот, а на рис. 13.2,б – одна из типичных реальных. Черезωс и ωз обозначены частоты среза и задерживания.
Рис. 13.2. Амплитудно-частотные характеристики
фильтров верхних частот
Полосовые фильтры (полосно-пропускающие).Полосовой фильтр пропускает сигналы одной полосы частот, расположенной в некоторой внутренней части оси частот. Сигналы с частотами вне этой полосы фильтр задерживает.
На рис. 13.3,априведена амплитудно-частотная характеристика идеального (нереализуемого) фильтра и одна из типичных реальных характеристик (рис. 13.3,б). Черезωс1 иωс2 обозначены две частоты среза,ω0– средняя частота. Она определяется выражением
.
Рис. 13.3. Амплитудно-частотные характеристики полосового фильтра
а-идеальная характеристика; б-реальная характеристика
Режекторные фильтры (полосно-заграждающие).Режекторные фильтры не пропускают (задерживают) сигналы, лежащие в некоторой полосе частот, и пропускают сигналы с другими частотами.
Амплитудно-частотная характеристика идеального (нереализуемого) фильтра приведена на рис. 13.4,а. На рис. 13.4,бпоказана одна из типичных реальных характеристик.
Рис. 13.4. Амплитудно-частотные характеристики
режекторного фильтра
Всепропускающие фильтры (фазовые корректоры).Эти фильтры пропускают сигналы любой частоты. Такие фильтры используются в некоторых электронных системах для того, чтобы изменить с той или иной целью фазочастотную характеристику всей системы (рис. 13.5).
Рис. 13.5. Амплитудно-частотная характеристика
всепропускающего фильтра