
- •В.А. Мунц Энергосбережение в энергетике и теплотехнологиях
- •Глава 1. Вторичные энергоресурсы 15
- •Энергоаудит
- •Глава 1. Вторичные энергоресурсы
- •1.1. Газообразные горючие вэр
- •4 Кольцевой коллектор; 5 – смеситель;
- •8 Камера догорания; 9 трубчатый теплообменник; 10 горелка
- •1.2. Огневое обезвреживание шламов металлургических производств
- •1 Топка; 2 – барабанная печь; 3 – горелки для сжигания поверхностного масла;
- •Глава 2. Утилизация высокотемпературных тепловых отходов
- •2.1. Газотрубные котлы-утилизаторы
- •1 Входная газовая камера; 2 испарительный барабан; 3 барабан сепаратора;
- •4 Сепарационное устройство; 5 трубы основного испарителя; 6 выходная камера;
- •7 Предвключенная испарительная поверхность
- •1 Газотрубная поверхность нагрева; 2 нижний барабан; 3 входная газовая камера;
- •4 Поворотная камера; 5 выходная газовая камера; 6 верхний барабан;
- •7 Пароперегреватель; 8 змеевики для разогрева при пуске
- •2.2. Водотрубные котлы-утилизаторы
- •4 Шламоотделитель; 5 – испаритель II ступени; 6 - балки; 7 - барабан; 8 – обдувочные линии; 9 - испаритель III ступени; 10 – экономайзер
- •2.3. Котлы-утилизаторы за обжиговыми печами серного колчедана
- •1 Печь с кипящим слоем; 2 испаритель, размещенный в кипящем слое;
- •3 Котел-утилизатор
- •1 Барабан; 2 вход газов; 3 труба в трубе;
- •4 Разделительная перегородка; 5 выход газов
- •1 К пароперегревателю, расположенному в кипящем слое;
- •2 От пароперегревателя; 3 испарительный блок; 4 ударная очистка
- •2.4. Установки сухого тушения кокса (устк)
- •2.5. Котлы-утилизаторы сталеплавильных конвертеров
- •1 Циркуляционные насосы; 2 – паровой аккумулятор; 3 — газоплотная юбка; 4 — горелки; 5 — подъемный газоход; 6 — барабан-сепаратор; 7 — конвективный испаритель;
- •12 Дымовая труба; 13, 14 — дымососы; 15смеситель; 16 — конвертер
- •Глава 3. Энерготехнологические установки
- •3.1. Энерготехнологическое комбинирование в прокатном производстве
- •1 Проходная печь для нагрева металла; 2 нагреваемый металл; 3 газовые горелки;
- •4 Котел-утилизатор; 5 испарительные поверхности нагрева; 6 пароперегреватель;
- •7 Барабан; 8 водяной экономайзер; 9 воздухоподогреватель
- •3.2. Энерготехнологическое комбинирование в целлюлозно-бумажной промышленности
- •3.3. Энерготехнологическое комбинирование в доменном производстве
- •Расчет тепловой схемы
- •3.4. Энерготехнологическое комбинирование при получении водорода
- •3.5. Охлаждение конструктивных элементов высокотемпературных установок
- •1 Теплообменная поверхность; 2 циркуляционный насос;
- •Глава 4. Использование отработавшего пара
- •1 Производственная установка;
- •1 Производственный агрегат;
- •2 Пароочиститель; 3турбина мятого пара; 4турбина двойного давления;
- •5, 6 Тепловые аккумуляторы;
- •Глава 5. Утилизация низкопотенциальных тепловых отходов
- •5.1. Утилизация теплоты загрязненных стоков
- •5.2. Утилизация теплоты агрессивных жидкостей
- •6 Теплообменники с промежуточным теплоносителем;
- •5.3. Утилизация теплоты вентиляционных выбросов
- •1 Приточный вентилятор; 2 вытяжной вентилятор; 3 пластинчатый теплообменник; 4 сборник конденсата; 5 фильтр наружного воздуха;
- •6 Фильтра удаляемого воздуха; 7 воздухонагреватель;
- •8 Воздухораспределитель
- •Глава 6. Глубокое охлаждение продуктов сгорания
- •6.1. Влажный воздух, влажные продукты сгорания
- •6.2. Утилизация теплоты низкотемпературных дымовых газов
- •6.3. Расчет контактного экономайзера
- •Глава 7. Парогазовые установки
- •7.1. Основные типы парогазовых установок
- •7.2. Количественные показатели термодинамических циклов пгу
- •7.3. Термическая эффективность парогазовых установок
- •7.4. Соотношения между параметрами газового и парового циклов
- •7.5. Парогазовые установки с впрыском пара
- •7.6. Модернизация котельных в тэц
- •Глава 8. Энергосбережение в газовой промышленности
- •8.1. Опытно-промышленная газотурбинная расширительная станция (гтрс) на Среднеуральской грэс
- •8.2. Оптимальное использование теплоты уходящих газов газовых турбин
- •8.3. Теплоснабжение от утилизационных установок компрессорных станций
- •Глава 9. Энергосбережение промышленности
- •9.1. Энергосбережение в котельных и тепловых сетях
- •1. Снижение потерь теплоты с уходящими газами
- •2. Потери теплоты с химической неполнотой сгорания
- •3. Потери теплоты в окружающую среду
- •4. Работа котельной установки в режиме пониженного давления
- •5. Температура питательной воды tв
- •6. Возврат конденсата в котельную
- •7. Использование тепловой энергии непрерывной продувки котлов
- •8. Режимы работы котельного оборудования
- •9. Перевод паровых котлов на водогрейный режим
- •10. Оптимизация работы насосного и тягодутьевого оборудования
- •9.2. Тепловые потери трубопроводов
- •9.3. Энергосбережение в компрессорном хозяйстве
- •9.4. Снижение теплопотерь за счет использования двухкамерного остекления
- •9.5. Система инфракрасного обогрева производственных помещений
- •8 Рабочие места в цехе
- •Библиографический список
- •620002, Екатеринбург, ул. Мира,19
- •620002, Екатеринбург, ул. Мира,19
9. Перевод паровых котлов на водогрейный режим
Перевод паровых котлов на водогрейный режим имеет как недостатки, так и преимущества.
При переводе всех котлов паровой котельной на водогрейный режим необходима установка вакуумного деаэратора вместо атмосферного, надежность работы которого в условиях разбалансировки тепловой сети крайне низка. При низкой температуре обратной сетевой воды и отсутствующих насосах рециркуляции, как правило, не удается подогреть воду перед вакуумным деаэратором до требуемой температуры.
При переводе котла на водогрейный режим уменьшается температура воды на вводе в котел со 105 до 70 ºС, а также увеличивается температурный напор, поскольку средняя температура теплоносителя снижается от температуры насыщения при давлении в котле (~194 ºС) до средней температуры воды в водогрейном котле (~100 ºС). Обе эти причины приводят к снижению температуры уходящих газов и, как следствие, к некоторому повышению КПД котла.
10. Оптимизация работы насосного и тягодутьевого оборудования
В целях обеспечения надежности, как правило, тягодутьевое оборудование устанавливается с большим запасом мощности. Это приводит к тому, что дымососы и вентиляторы работают далеко от области максимальных значений КПД. Достаточно простым и малозатратным мероприятием является замена существующего двигателя на электродвигатель с меньшим числом оборотов.
Наибольшие затраты электроэнергии в котельных приходятся на привод сетевых насосов. При этом следует выделить следующие особенности: должна быть тщательно проанализирована гидравлика сети, в которой не должно быть участков, где скорость воды много больше 1 м/с; при качественном регулировании тепловой нагрузки сеть должна быть шайбирована, чтобы исключить перераспределение нагрузок между потребителями; характеристики насосов должны быть согласованы с характеристикой тепловой сети. И, наконец, должна быть предусмотрена возможность работы с пониженным расходом воды в летний период, для чего обычно устанавливают дополнительные насосы.
9.2. Тепловые потери трубопроводов
Качество изоляции трубопроводов особенно в небольших населенных пунктах не соответствует нормам. Достаточно часто встречаются протяженные участки плохо изолированных либо совсем неизолированных трубопроводов. Удельные (с единицы погонного метра) теплопотери от неизолированных труб, обусловленные конвекцией и излучением составят ql, Вт/м:
, (195)
где л и к – коэффициенты теплоотдачи за счет излучения и конвекции; tт и tв – температуры теплоносителя и наружного воздуха; d – наружный диаметр трубы. Коэффициент теплоотдачи за счет излучения принимается в соответствии со СНИП равным 5 Вт/(м2К). Точно рассчитать коэффициент теплоотдачи конвекцией достаточно сложно, поскольку его величина существенно зависит от погодных условий. При отсутствии ветра коэффициент теплоотдачи может быть рассчитан по формулам для естественной конвекции [18] к, Вт/(м2К):
, (196)
где Gr=gβ·(tт-tв)d3/v2 – число Грасгофа; коэффициент объемного расширения для идеальных газов рассчитывается как β=1/Tв (при температуре воздуха); g – ускорение свободного падения, Pr=v/a – число Прандтля, коэффициент кинематической вязкости и коэффициент теплопроводности рассчитывают при температуре средней между температурой поверхности и воздуха.
При наличии заметного ветра следует пользоваться выражениями для вынужденной конвекции [18]
(197)
На рис. 78 приведены данные расчета удельных тепловых потерь (при естественной конвекции) неизолированных стальных труб при температурах теплоносителя 130 и 90 °С и средней температуре воздуха за отопительный период (-6,8 °С). При диаметре трубы в 300 мм и температуре теплоносителя 130 ºС с 1 км трубопровода теряется 1,5 МВт тепловой мощности.
Рис. 78. Удельные тепловые потери от неизолированного трубопровода:
1 – температура теплоносителя 130 ºС; 2 температура теплоносителя 95 ºС