
- •1. Поколения языков программирования. Трансляторы.
- •2. Принципы построения реляционной бд. Состав реляционной субд. Фундаментальные свойства реляционных отношений.
- •3. Угрозы информационной безопасности. Виды угроз.
- •1. Средства модульного программирования: функции (назначение, описания, определения, вызов).
- •2. Объекты данных и объекты манипулирования данными в модели базы данных. Структурированный язык запросов sql. Общая характеристика групп операторов (подъязыки). Типы данных в sql.
- •3. Принципы обеспечения информационной безопасности.
- •1. Наследование в объектно-ориентированном программировании
- •3. Направления обеспечения информационной безопасности. Организационная защита.
- •1. Базовые алгоритмические операторы (if, switch, for, while).
- •3. Направления обеспечения информационной безопасности. Инженерно-техническая защита.
- •1. Идентификаторы – имена программных объектов. Области действия.
- •2. Проектирование баз данных на основе модели "Сущность-связь". Основные элементы модели. Основные нотации, используемые для построения er диаграмм.
- •3. Межсетевые экраны и антивирусы. Назначение и виды.
- •1. Информатика. Массивы – простейший структурированный тип данных.
- •2. Архитектура субд и бд. Компоненты субд построенных по технологии клиент-сервер.
- •2. Проектирование бд на основе нормализации, характеристика 1nf, 2nf, 3nf.
- •3. Служба dns. Конфигурирование: зоны, ресурсные записи, виды серверов.
- •2. Операционные системы. Вычислительный процесс. Основные и дополнительные состояния процесса. Прерывание. Операции над процессами.
- •3. Служба dhcp. Конфигурирование: области, пулы, аренда.
- •2. Основные характеристики ос. Многозадачность. Системы управления данными и файлами. Обеспечение аппаратно-программного интерфейса.
- •3. Служба dns. Назначение, принципы работы, виды запросов.
- •2. Операционные системы. Антивирусные программы и антивирусная технология. Проверка целостности. Стандартные служебные программы обслуживания дисков. Архиваторы.
- •3. Служба каталогов х.500. Основные понятия. Агенты, модели, объекты, схемы.
- •1. Гипертекстовый документ как средство обмена информацией и форма представления и отображения данных. Элементы гипертекстовой страницы и их атрибуты. Элементы языка html.
- •2. Сетевые ос. Структура сетевой ос. Одноранговые сетевые ос и ос с выделенными серверами.
- •3. Одноранговые и иерархические модели многопользовательских ис.
- •1. Основные понятия теории моделирования систем. Понятия системы, ее модели и моделирования.
- •2. Операционные системы. Управление процессорами и заданиями в однопроцессорном вычислительном комплексе. Алгоритмы планирования процессов. Три основных уровня планирования.
- •3. Особенности построения и организации эс. Основные режимы работы эс.
- •1. Классификация видов моделирования систем.
- •2. Операционные системы. Иерархическая структура файловой системы. Физическая организация файловой системы. Обработка прерываний.
- •3. Технология разработки эс.
- •1. Сетевые модели. Отображение динамики системы сетями Петри.
- •2. Операционные системы. Методы распределения памяти с использованием дискового пространства. Страничное распределение. Сегментное распределение. Странично-сегментное распределение.
- •3.Интеллектуальные ис. Формирование и оценка компетентности группы экспертов. Характеристика и режимы работы группы экспертов.
- •1. Дискретно – стахостические модели. Математический аппарат систем массового обслуживания.
- •2. Основные классы архитектур программных средств.
- •3. Эс с неопределёнными знаниями.
- •1. Статическое моделирование на эвм. Моделирование дискретных и непрерывных случайных величин.
- •2. Жизненный цикл программного средства.
- •3. Задачи обработки экспертных оценок. Групповая экспертная оценка объектов при непосредственном оценивании.
- •1. Программные средства моделирования систем. Требования, предъявляемые к программным средствам моделирования. (Моделирование)
- •1. Универсальные языки (с, Delphi)
- •2. Специализированные языки (gpss, siman, slam, simscript, simula, gasp).
- •3. Имитационные среды (Arena, AutoMod, AlphaSim, Anylogic, Deneb, Extend, gpss World, MicroSaint, mast и др.).
- •Моделирование в имитационных средах
- •Преимущества и недостатки программных средств моделирования систем
- •2. Разработать программный модуль для нахождения значений функции
- •3. Байесовские сети доверия как средство разработки эс. Основные понятия и определения. (эс)
- •1. Основные понятия и определения теории планирования имитационных экспериментов.
- •2. Разработать блок-схему алгоритма нахождения значений функции для задаваемого пользователем диапазона и шага измененияx, используя разные типы циклов: со счетчиком, с предусловием, с постусловием.
- •3. Байесовское оценивание. Теорема Байеса как основа управления неопределенностью.
- •1. Оценка точности и достоверности результатов моделирования.
- •2. Разработать программный модуль для нахождения значений функции для задаваемого диапазона и шага изменения. Разработать тесты для программного модуля.
- •3. Эс на основе теории Демстера-Шеффера (тдш). Предпосылки возникновения теории.
- •1. Понятие алгоритма и его свойства. Программа и принцип программного управления. Поколения эвм.
- •2. Разработать программный модуль для сортировки массива методом Шелла.
- •3. Виды отказов в информационных системах.
- •1. Эвм с нетрадиционной архитектурой. Классификация эвм по Флину.
- •2. Методы разработки структуры программ.
- •3. Количественные показатели надежности ис. Вероятность безотказной работы. Интенсивность отказов.
- •1. Понятие позиционных систем исчисления. Основные типы позиционных систем в эвм Представления отрицательных чисел в эвм. Прямой, обратный и дополнительный коды.
- •Прямой, обратный и дополнительные коды.
- •2. Основные классы архитектур программных средств.
- •3. Основы теории Демстера-Шеффера: фрейм различия, базовая вероятность.
- •1. Структура эвм с одной системной шиной. Понятие системной шины. Классификация линий шины. Их назначение. (Архитектура эвм)
- •2. Понятие внешнего описания программного средства. (Технология программирования)
- •3. Понятие isdn. Краткая историческая справка о появлении isdn. Технология isdn. (ИиОп)
- •1. Запоминающие устройства (зу). Основные показатели зу. Внутренние и внешние зу.
- •Внутренние зу.
- •2. Определение требований к программному средству.
- •3. Компоненты isdn. Структура построения isdn.
- •1. Способы обмена данными. Принцип программного обмена данными. Обмен по прерываниям. Обмен в режиме прямого доступа к памяти. (Архитектура эвм)
- •2. Функциональная спецификация программного средства. (Технология программирования)
- •3. Стандарты Internet как основа стандартизации в открытых системах. Стадии стандартизации протокола. (Открытые системы и сети)
3. Имитационные среды (Arena, AutoMod, AlphaSim, Anylogic, Deneb, Extend, gpss World, MicroSaint, mast и др.).
Моделирование в имитационных средах
Имитационные среды не требуют программирования в виде последовательности команд. Вместо составления программы пользователь составляет модель, выбирая из библиотеки графические модули, и/или заполняет специальные бланки.
Модель составляют из библиотечных графических модулей, и/или заполняют специальные формы.
В современных системах имитационного моделирования автоматизированы процессы статистической обработки данных, управления проведением экспериментов, оптимизации поведения системы, сравнения различных альтернатив. Так же существует возможность создания своих собственных блоков на встроенных универсальных языках.
Как правило, имитационная среда обеспечивает возможность визуализации процесса имитации и связи с инструментами компьютерного проектирования систем.
В отличие от специализированных языков имитационное моделирование ведется быстрее, но область приложения большинства систем имитации ограничена.
Для определенности рассмотрим «плюсы» и «минусы» универсальных, специализированных языков моделирования и имитационных сред.
Преимущества и недостатки программных средств моделирования систем
Выделим основные требования, которые предъявляются к программным средствам имитационного моделирования и отметим, выполняются или не выполняются эти требования и в какой степени.
№ пп |
Требования к программным средствам имитационного моделирования:
|
Универсальные языки |
Спец. языки |
Имитацион. среды |
1 |
простота и скорость процесса имитационного моделирования (не требуется знать язык программирования. Модель составляется из библиотеки стандартных модулей. Описание блоков близко к описанию на естественном языке) |
0 |
1 |
2 |
2 |
возможность «продвигать» модельное время либо на одну единицу, либо до следующего события |
0 |
2 |
2 |
3 |
способность генерировать случайные числа и работать со случайными переменными и различными законами распределения СВ |
0 |
2 |
2 |
4 |
возможность построения моделей без аналитического описания динамики системы |
0 |
2 |
2 |
5 |
способность автоматически накапливать необходимые данные; (Пользователю нет необходимости включать в модель вычислительные операторы для сбора и накопления этих данных) |
0 |
2 |
2 |
6 |
автоматизация процессов статистической обработки данных, управления экспериментами, оптимизации поведения системы, сравнения различных альтернатив. |
0 |
1 |
2 |
7 |
возможность выявлять и регистрировать логические несоответствия и другие ситуации, связанные с ошибками в модели |
0 |
2 |
2 |
8 |
широкая распространенность |
2 |
1 |
0 |
9 |
гибкость (можно моделировать и программировать все, что угодно) |
2 |
1 |
0 |
10 |
возможность заранее строить для пользователей стандартные подпрограммы, которые могут применяться в других имитационных моделях |
2 |
2 |
2 |
11 |
простота визуализации работы системы в соответствии с имитационной моделью (соединен с языком анимации. Встроенная анимация). |
0 |
1 |
2 |
0 – требование не выполнено; 1 – требование выполнено; 2 – требование продвинуто.
Итак, программные средства имитации в своем развитии изменялись на протяжении нескольких поколений, но основное назначение всех этих средств – уменьшение трудоемкости создания программных реализаций имитационных моделей и экспериментирования с моделями.