
- •Глава 1
- •Глава 2
- •3. Промывка.
- •4. Обезвоживание.
- •5. Уплотнение материала.
- •7. Удаление из срезов парафина.
- •8. Окрашивание срезов.
- •Глава 3
- •Глава 4
- •3. Организменный уровень, а) Иммунная регуляция.
- •Глава 5
- •Глава 6
- •Глава 7
- •2. Функция внутреннего обмена (защитная, опорно-трофическлл функция).
- •3. Функция сократимости, движения.
- •4. Функция возбудимости, реактивности, интегративная функция.
- •Глава 8
- •Глава 9 мезенхима. Кровь и лимфа
- •Глава 10
- •Глава 11
- •Глава 12
- •Глава 13
- •Глава 14
Глава 11
СКЕЛЕТНЫЕ СОЕДИНИТЕЛЬНЫЕ ТКАНИ. КОСТНЫЕ И ХРЯЩЕВЫЕ ТКАНИ
Скелетные соединительные ткани имеют общие принципы организации, свойственные тканям мезенхимного происхождения. Они развиваются из склеротомией мезенхимы и построены из клеток и межклеточного вещества, а последнее состоит из основного аморфного вещества и волокон. Вместе с тем, преобладающей функцией этих тканей является опорная функция, что определяет особенности их строения. Такими являются,во-первых, существенное преобладание над клетками межклеточного вещества,во-вторых, особый состав и строение межклеточного вещества, которое имеет более плотную, чем в волокнистых соединительных тканях, консистенцию, а в костной ткани оно минерализовано, твердой консистенции. Скелетные ткани подразделяются на две группы:костные ихрящевые ткани. В свою очередь, и те, и другие включают несколько разновидностей:
Общая характеристика. Хрящевые ткани у взрослого человека выполняютопорную функцию. Они входят в состав стенки некоторых полых органов (воздухоносные пути), обеспечивая ее жесткость, участвуют в формировании соединений костей, в том числе и подвижных (суставный гиалиновый хрящ). Эластический хрящ обеспечивает обратимую деформацию органов, в состав которых он входит. В эмбриональном периоде хрящевая тканьвыполняет формообразующую функцию, а также используется при образовании кости(непрямой остеогистогенез — провизорная функция хрящевой ткани, см. ниже). В некоторых случаях гиалиновая хрящевая ткань образуется при регенерации костей путем так называемоговторичного заживления, а затем заменяется пластинчатой костной тканью (пластичес-кая функция хрящевой ткани). Благодаря особому строению межклеточного вещества, в первую очередь основного вещества, хрящевые ткани обладают повышенной прочностью и упругостью, а эластический хрящ, кроме того, и эластичностью.
ОБЩИЙ ПЛАН СТРОЕНИЯ. Все хрящевые ткани состоят из клеток (хондробласты, хондроциты, хонд-рокласты) и межклеточного вещества. Межклеточное вещество образовано основным аморфным веществом и волокнами. Классификация хрящевой ткани на три вида — гиалиновую, эластическую и волокнистую (колла-геново-волокнистую) — основана на строении межклеточного вещества. В гиалиновой хрящевой ткани в межклеточном веществе содержатся только коллагеновые волокна. В эластической ткани кроме коллагеновых волокон есть и эластические волокна. В коллагеново-эластичной хрящевой ткани коллагеновые волокна идут параллельно друг другу. Волокна хрящевой ткани называются хондри-новыми волокнами.
РАЗВИТИЕ. Хрящевые ткани развиваются из склеротомной мезенхимы. В развитии хряща выделяют 4 стадии (рис. 11.1).
1. Стадия образования хондроген-ного островка. В месте образования хрящевой ткани мезенхимные клетки теряют отростки, размножаются митозом и образуют плотное скопление клеток — хондрогенный островок. Типичное межклеточное вещество на этой стадии отсутствует.
2. Стадия первичной хрящевой ткани (хондроида). В эту стадию ме-зенхимные клетки превращаются в хрящевые клетки: в них образуется грану лярный эндоплазматический ретикулум, комплекс Гольджи, накапливаются митохондрии и включения. Они начинают продуцщювать межклеточное вещество: специфический для хряща коллаген IIтина и гликозаминогликаны.
3. Стадия дифференцировки хрящевой ткани. В эту стадию происходи! дальнейшая дифференцировка хрящевых клеток, они начинают секретиро вать сульфатированные гликозаминогликаны, илихондроитинсульфаты, придающие межклеточному веществу хряща базофилию. В межклеточном веществе накапливаетсяхондромукоид — соединение белков с углеводами дающее оксифилию. Формирующиеся компоненты межклеточного веще ства раздвигают хондробласты, которые оказываются лежащими в лакунах, постепенно снижают синтетическую активность и превращаются в хондроциты. Образуется надхрящница с кровеносными сосудами и камбиальным слоем, в котором находятсяпрехондробласты, по мере роста хряща постоянно превращающиеся в хондробласты.
Рост хрящевой закладки. За счет надхрящницы происходит рост хряща с периферии —аппозиционный рост хряща. Кроме того, находящиеся внутри хряща хондроциты в течение определенного времени способны к делению, дифференцировке и синтезу межклеточного вещества. За счет этого происходит рост хряща изнутри, илиинтерстициальный рост.
СТРОЕНИЕ ХРЯЩЕВЫХ ТКАНЕЙ. Как отмечалось, хрящевая ткань состоит из клеток и межклеточного вещества.
КЛЕТКИ. Клетки хрящевой ткани делятся на несколько видов: стволовые, полу стволовые, или прехондробласты, хондробласты, хондроциты. Все вместе они образуют основной дифферон хрящевых клеток — диффе-ронхондроцитов. В последнее время выделяют также ихондрокласты.
ХОНДРОЦИТЫ. Это основной вид хрящевых клеток (рис. 11.2, см. также рис. 11.4). Эти клетки лежат в полостях, или лакунах. В зависимости от степени зрелости (степени дифференцировки) и функциональной активности выделяют три вида хондроцитов. Первый тип — молодые хондроциты. Имеют высокое ядерно-цитоплазматическое отношение, т.е. в них площадь ядра больше, чем площадь цитоплазмы. Эти клетки могут делиться митозом, формируяизогенные группы хондроцитов (см. ниже). В цитоплазме хондроцитовIтипа хорошо выражены все органеллы общего назначения: митохондрии, эн-доплазматическая сеть, лизосо-мы и другие. Данный тип клеток чаще находится в молодом хряще, который растет за счет деления хондроцитов.
Второй тип хондроцитов характеризуется тем, что в них снижается ядерно-цитоплазматическое отношение за счет увеличения объема цитоплазмы. Ядро округлое или овальное, с преобладанием эухрома-тина и развитым ядрышком (ядрышками). В цитоплазме накапливаются органеллы синтеза белка: гранулярная эндоплазматическая сеть, комплекс Гольджи, митохондрии, а также включения гликогена и липидов. Появляются секреторные включения. Эти клетки образуют компоненты основного вещества — гликонротс-ины и протеогликаны. Синтез коллагена в этих клетках еще не происходит.Третий тип хондроцитов характеризуется самым низким ядерно-ци-топлазматическим отношением, т.е. в них отмечается дальнейшее увеличение объема цитоплазмы, в которой еще более возрастает количество орга-нелл синтеза белка и включений. Этот тип хондроцитов вырабатывает коллагеновые белки, а синтез гликопротеинов и протеогликанов в них несколько снижается.
ХОНДРОБЛАСТЫ. Это молодые клетки хрящевой ткани. Они способны к митозу и одновременно к синтезу межклеточного вещества. В зрелом хряще локализация данных клеток ограничена надхрящницей. За счет деятельности хондробластов происходит аппозиционный рост хряща. Хондробласты образуются из стволовых клеток, которые находятся вокруг кровеносных капилляров в камбиальном слое надхрящницы (периваску- лярные клетки) и превращаются в прехондробласты, а затем в хондробл.к ты. В хондробластах хорошо развиты гранулярная и агранулярная эп доплазматическая сеть, комплекс Гольджи, митохондрии. Хондроблап: являются синтетически активными клетками, продуцируют межклеточном вещество хряща, а в последующем дифференцируются в хондроциты трс\ выше описанных видов.
ХОНДРОКЛАСТЫ. В последнее время как самостоятельную клеточ ную линию хрящевых клеток выделяют хондрокласты. Это многоядерньк клетки макрофагической природы, образующиеся путем дифференцировкн из моноцитов крови. Данные клетки родственны остеокластам костной ткани (см. ниже). Хондрокласты разрушают старые, особенно минерализо ванные участки межклеточного вещества хряща. Эти клетки участвую! также в разрушении хряща при развитии из него костной ткани. В зрелом хряще локализуются в надхрящнице. В клетках хорошо развит лизосо мальный аппарат. По мнению некоторых авторов, нет оснований выдс лять хондрокласты как отдельные клетки: разрушение хряща и кости вы полняют одни и те же клетки — остеокласты.
МЕЖКЛЕТОЧНОЕ ВЕЩЕСТВО ХРЯЩЕВОЙ ТКАНИ. Состоит из коллагеновых (хондриновых) волокон, которые содержат коллаген II типа Кроме того, в состав коллагеновых волокон входит коллаген IX типа, который осуществляет их сшивку. Содержание этого коллагена в хряще в 5 раз меньше, чем коллагена II типа, однако его значение высоко. При остеоартритах (воспалении суставных хрящей) сшивание хондриновых во локон нарушается, что ведет к деградации хряща.
В составе межклеточного вещества гиалинового и эластического хря щей обнаружены также минорные коллагены, в частности, VI и X типов Коллаген X типа обнаружен в гиалиновых хрящах, с его присутствием связана способность хряща к обызвествлению. Не подвергающиеся обызвествлению хрящи лишены этого коллагена.
Все межклеточное вещество (матрикс хряща) подразделяют на две зоны: территориальный и интертерриториальный матрикс. Территориальный матрикс непосредственно окружает группы хрящевых клеток (изо-генные группы) (см. ниже). В него входят перицеллюлярные протеогли-каны (непосредственно окружают хондроциты) и перицеллюлярная капсула. Перицеллюлярные протеогликаны при помощи адгезивных молекул (хондронектин, анкорин и др.) тесно связаны с гликокаликсом хонд-роцита. Перицеллюлярная капсула построена в основном из коллагена типа IX и контактирует с коллагеновыми фибриллами межклеточного вещества, состоящими из коллагена II тина. Территориальный матрикс: окрашивается базофильно.
Интертерриториальный матрикс находится между изогенными группами хрящевых клеток, представляет собой наиболее старые участки межкле-точного вещества и окрашивается оксифилыю. Его коллагеновые волокна
тесно связаны с волокнами перицеллюлярной капсулы. Их расположение
подчиняется направлению вектора силовых нагрузок.
В эластическом хряще преобладают эластические волокна (90% всех
волокон). 10% составляют коллагеновые волокна.
Аморфное вещество хрящевой ткани представлено в основном протеог-ликанами. В состав нротеогликанов входят гликозаминогликапы (80—90%) и белки (10—20%). Из гликозаминогликанов преобладает хондроитинсуль-фат. Белковые молекулы образуют стержень, к которому под прямым углом присоединяются молекулы хопдроитинсульфата. Формируется структура, напоминающая ламповую щетку. Такие мономеры протеогликанов с участием гиалуроиовой кислоты образуютагрегаты протеогликанов, которые могут формироватьсуперагрегаты протеогликанов. Протеогликаны способны связывать огромные количества воды: 75% веса хряща образовано тканевой жидкостью. Это обеспечивает низкую сжимаемость хряща, его упругость.
ОСОБЕННОСТИ СТРОЕНИЯ РАЗЛИЧНЫХ ВИДОВ ХРЯЩЕВОЙ ТКАНИ
ГИАЛИНОВАЯ ХРЯЩЕВАЯ ТКАНЬ. Этот вид хрящевой ткани находится в местах соединения ребер с грудиной, в гортани, трахее, бронхах крупного калибра, на суставных поверхностях. Из нее образован также скелет эмбриона. Основное вещество гиалинового хряща имеет такой же коэффициент преломления, как и его коллагеновые волокна. Поэтому последние при обычной окраске отдельно не видны, и все межклеточное вещество имеет вид матового стекла (греч. "hyalos" означает "стекло"). Строение гиалинового хряща различно в зависимости от его локализации. Поэтому надо рассмотреть зги хрящи отдельно.
В последнее время выделяют понятие о хондроне как оструктурно-функциональной единице хряща. В состав хондрона входятхондроцит, перицел-люлярный матрикс и пе-рицеллюлярная капсула. Перицсллюлярный матрикс содержит протеогликаны, которые при помощи молекул адгезии тесно связаны с гликокаликсом хондроцита. Перицеллюлярная капсула построена из коллагена типаIXи контактирует с коллаге-новыми фибриллами межклеточного вещества, состоящими из коллагенаIIтипа. В зонах пролиферации в суставном и метаэнифизарном хряще единичные хондроны объединяются в цепочки по две клетки и более. Такая цепочка имеет общую перицеллюлярную капсулу. Хопдроновая организация хряща создает наилучшие возможности адаптации хряща к механической нагрузке, т.к. обеспечивает тесную интеграцию клеток и межклеточного вещества. Размножение клеток в хондроне создает условия для интерстнналыюго
роста хряща.
Здоровый некалышнированный хрящ выделяет так называемый анти-ангиогенный фактор — фактор, препятствующий врастанию в него из надхрящницы кровеносных сосудов. При старении хряща интенсивность выработки этого фактора существенно снижается. При этом в хрящ начинают врастать кровеносные сосуды, что способствует минерализации хряща и превращению его в кость. В настоящее время этот фактор выделен в чистом виде. Его использование может оказаться перспективным в онкологии, поскольку известно, что клетки злокачественных опухолей вырабаты-
нают ангиогенный фактор, способствующий врастанию вonyxo.i; кровеносных сосудов и ее питании.-СУСТАВНОЙ ГИАЛИНО ВЫЙ ХРЯЩ. Прочно срастается с подлежащей костью. Благодаря гладкой поверхности обеспечив;! ет скольжение костей друг относительно друга, а его выражен ные упругие свойства амортизируют всевозможные удары. Суставной хрящ состоит из трех зон (рис. 1.5):
1. Поверхностная зона. Образована поверхностнойбесклеточной пластинкой, которая состоит из гликопротеи новых и кол лагеновых фибрилл,тангенциальным ипереходным слоями Тангенциальный слой содержит уплощенные, а переходный — округлые хондроциты. Хондроциты в основном первого типа, но встречаются также хондроциты второго и третьего типа. Коллагеновые волокна в тангенциальном и переходном слоях идут параллельно суставной поверхности. Эта зона обеспечивает гладкую поверхность суставного хряща, а также его регенерацию.
2. Промежуточная (основная) зона. В ней проходят мощные пучки коллагеновых фибрилл, которые образуют сложную сеть, в основном ориентированы под углом к суставной поверхности и могут формироватьаркады. В результате переплетения коллагеновых волокон образуются лакуны, в которых лежат хондроциты первого и второго типа. Они продуци-руют коллаген, гликоиротеииы и нротеогликаны, а также делятся. В результате образуютсяколонки иизогенные группы хондроцитов.
3. Базальная (глубокая) зона. Подразделяется на два слоя:поверхностный слой необызвествленного хряща иглубокий слой обызвествленного хряща. Эти два слоя отделяются друг от друга зигзагообразнойбазофиль-ной линией, формирующейфронт минерализации. Матрикс базалыюй зоны представлен мощными пучками коллагеновых волокон, которые прямо связаны с подлежащей костью и направлены перпендикулярно к суставной поверхности. Со стороны кости в эту зону проникают кровеносные капилляры. Клеток в этой зоне мало. Они подвергаются деструкции в зоне обызвествленного хряща, а в зоне необызвествленного хряща есть также гипертрофированные клетки с большим числом органелл и интенсивными синтетическими процессами.
В период роста кости клетки суставного хряща наряду с активным синтезом межклеточного вещества активно делятся, благодаря чему компенсируется убыль хряща, подвергающегося превращению в кость. После завершения роста деление хрящевых клеток в основном прекращается, большинство их полностью специализируются на выработке межклеточного вещества.
Эластическая хрящевая ткань. Входит в состав хрящей ушной раковины, надгортанника, в состав стенки бронхов среднего калибра, некоторых хрящей гортани. Этот хрящ обеспечивает эластичность — обратимую деформацию органов, в состав которых он входит.
Стимуляция регенерации хряща. Пролиферацию хондроцитов и усиление ими синтеза межклеточного вещества можно стимулировать подсадкойв область дефекта суспензии хондроцитов из эпифизов молодых животных, применением салицилатов, ростовых факторов (гормон роста, инсулин и др.). Основным условием успешной регенерации суставного хряща является обеспечение ранней функции сустава.
Трансплантация хряща. Матрикс хряща является низко проницаемым. В связи с этим и отсутствием в хряще сосудов он практически недоступен клеткам и факторам иммунной системы, являетсяиммунологичес-ки инертным. Поэтому в настоящее время достаточно широко применяется трансплантация хряща. При этом в силу наибольшей функциональной значимости чаще трансплантируют суставной хрящ. Может трансплантироваться как собственный хрящ(аутопластика), так и донорский, в первую очередь, трупный хрящ(аллопластика). Трансплантация хряща позволяет восстановить подвижность пораженных суставов и все шире применяется в травматологии.
КОСТНЫЕ ТКАНИКостные ткани состоят из клеток(остеоцитов, остеобластов иостеокластов) и минерализованного межклеточного вещества. Костные ткани выполняют следующие основные функции:
1. Опорно-механическая функция. Из костной ткани построены кости, которые, в свою очередь, образуют скелет, являющийся частью аппарата движения. Скелет служит для прикрепления внутренних органов, обеспечивает их правильное взаимоположение.
2. Гомеостатическая функция — регуляция минерального гомеостаза. Костная ткань является депо минеральных веществ (в первую очередь, фосфора и кальция), может извлекать их из крови при избытке и отдавать обратно при недостатке. 3. Костная ткань участвуетв регуляции кроветворения (гемопоэ-за). Между костной тканью и кроветворной тканью существуют тесные взаимодействия, которые обеспечивают нормальное окружение для дифферен-цировки клеток крови.
4. Защитная функция. Скелет, образованный костной тканью, выполняет защитно-механическую функцию но отношению к головному и спинному мозгу, внутренним органам.
КЛЕТКИ КОСТНОЙ ТКАНИ. 1. Остеобласты. Это молодые, функционально активные клетки костной ткани. В зрелой кости местами их локализации являются: 1) надкостница; 2) эндост; 3) каналы остеонов. Предшественниками остеобластов являютсяостеогенные клетки. Они имеют мезенхимное происхождение и в зрелой кости находятся в тех же зонах, что и образующиеся из них остеобласты. При этом остеогенные клетки лежат в тесной близости с капиллярами надкостницы, эндостаи остеонов (поэтому их часто называютпериваскулярными клетками). Популяция остеогенных клеток может пополняться за счетгематогенных предшественников стромальных механоцитов. Остеогенные клетки бипотентны: при высоком парциальном давлении кислорода в тканях они превращаются в остеобласты, при низком — в хондробласты. Этим обстоятельством объясняется частое развитие хряща при посттравматической регенерации кости.
Дифферои остеобластов включает клетки следующих стадий развития: остеогенные клетки (периваскулярные клетки) —> преостеобласты —» остеобласты —> остеоциты. Превращение остеогенных клеток в остеобласты индуцируют так называемыеморфогенетические белки кости (МБК). В свою очередь, остеобласты подразделяютсяна молодые, зрелые ипокоящиеся клетки.
Молодые остеобласты по структуре близки к преостеобластам. Они имеют округлую или овальную форму. Ядро крупное, с преобладанием эухро-матипа и крупными ядрышками, лежит эксцентрично (рис.11.8). Полярность клетки но отношению к минерализованному костному матриксу не выражена. Органеллы белкового синтеза развиты хорошо. Клетки активно синтезируют рРНК, коллаген, сульфатированные гликозаминогликаны, имеют более высокую активность щелочной фосфатазы, чем другие остеобласты, которая участвует в минерализации кости. Локализуются в эпифизах и метафизах, очагах эндохондралыюго окостенения (см. ниже).
Зрелые остеобласты имеют кубическую, призматическую, пирамидальную или треугольную форму. Отмечается отчетливаяполяризация клеток по отношению к костному матриксу. Ядро лежит сильно эксцентрично, гипертрофированное, гетерохроматин более конденсирован. Имеются крупные ядрышки. В цитоплазме зрелых остеобластов сильно развиты органеллы синтеза белка: гранулярная эндоплазматическая сеть, комплекс Гольд-жи, митохондрии,матриксные пузырьки (рис.11.9). В клетках активность щелочной фосфатазы ниже, чем в молодых остеобластах. Клетки обладают максимальной способностью к синтезу коллагена, но несколько менее выраженной способностью к минерализации матрикса. Располагаются в наиболее4 активных участках остеогенеза.
При помощи молекул клеточной адгезии остеобласты тесно связаны с межклеточным веществом. Увеличение нагрузки на кость приводит к формированию в межклеточном веществе отрицательного заряда (пьезоэлектрический эффект кости, см. ниже), который стимулирует остеобласты, продукцию и минерализацию ими межклеточного вещества. Поэтому у лиц физического труда объем костей существенно выше, чем у лиц умственного труда.
Покоящиеся остеобласты находятся в метаэнифизах, в эндосте и надкостнице взрослых индивидуумов, в эндосте растущей кости. Имеют удлиненную форму, ориентированы параллельно минерализованному матриксу кости, лежат разрозненно. Характерны узкие цистерны гранулярной ЭПС и комплекса Гольджи, а также развитая система аутофагосом. В целом органеллы в покоящихся остеобластах редуцированы. Данные клетки покрывают подавляющую часть поверхности кости. При этом они имеют контакты друг с другом и с остеоцитами, формируя единую клеточную систему, главной функцией которой является поддержание минерального го-меостаза. При перестройке кости покоящиеся остеобласты активируются и активно участвуют в процессах новообразования костной ткани.
Функциями остеобластов являются: 1) биосинтез органических компонентов межклеточного вещества(остеоида). К ним относятся коллагенIтипа (90% всех белков), коллагеныIII IV, V, IX иXIII типов (5% белков); гликопротеиныостеокальцин, остеонектин и др. 2) секреторная функция: биосинтез различных ростовых факторов, в том числе иморфогенети-ческих белков кости (МБК), различных цитокинов, регулирующих деятельность других клеток. 3) минерализация органического матрикса (остеоида). Остеобласты осуществляют минерализацию остеоида двумя механизмами:а) путем секреции фермента щелочной фосфатазы; б) путем секреции матриксных пузырьков. В первом случае секретируемая остеобластами щелочная фосфатаза обеспечивает местное повышение концентрации ионов фосфата путем отщепления его от фосфопротеинов основного вещества. Перед этим фосфопротеины в особых участках связываются с кол-лагеновыми фибриллами и реагируют с ионами кальция. Отщепление фосфатов фосфопротеинов щелочной фосфатазой ведет к образованию кристаллов фосфата кальция, которые в дальнейшем являются зонами кристаллизации(нуклеация). Рост первичных ядер происходит за счет дальнейшего упорядоченного присоединения ионов к ядрам кристаллизации. Кроме коллагена и фосфопротеинов сродством к минеральным веществам обладают гликопротеины основного вещества (остеонектин, остеокальцин и др).
Второй механизм минерализации заключается в том, что остеобласты секретируют матриксные пузырьки, содержащие большие концентрации фосфата кальция, щелочную фосфатазу, липиды. После секреции в межклеточное вещество матриксные пузырьки разрушаются, высвободившаяся щелочная фосфатаза отщепляет от органических фосфатов фосфорную кислоту, которая вместе с фосфатом кальция, содержащимся в матриксных пузырьках, образует кристаллы гидроксиапатита, служащие ядрами кристаллизации. В результате минерализации до 95% солей кальция ока-зываются связанными с коллагсновыми (оссеиновыми) волокнами, и лип. 5% взаимодействуют с молекулами основного вещества.
2. Остеоциты. Являются основными клетками костной ткани. Этоi„ печные клетки дифферона остеобластов, которые в значительной стечкт, потеряли способность синтезировать межклеточное вещество. Образую., остеоциты из остеобластов, которые, окружая себя синтезированным мел клеточным веществом, постепенно теряют активность.J3 растущую кос;, могут включаться и становиться на путь превращения в остеоциты ост. области всех трех описанных выше разновидностей. Это определяет р;,.. личия в структуре остеоцитов. А) Остеоциты поверхностных зон кос,,; имеют черты строения, свойственные остеобластам 2 типа (зрелые) (рис 11.9). Это"продуцирующие", или"синтезирующие", остеоциты(остеоцин 1 типа). В них развита гранулярная ЭПС, комплекс Гольджи, сохраняете синтез коллагена и гликозаминогликанов. Б) Остеоциты более глубоки зон кости в значительной степени (но не полностью!) теряют синтетиче, кую активность. Они имеют многочисленные (до 100) отростки разно; длины, лежащие в канальцах минерализованного матрикса, и содержа, хорошо развитые элементы цитоскелета, отвечающие за движение отрос, ков и самих остеоцитов в костной лакуне. В этих клетках слабо развиь гранулярная ЭПС, комплекс Гольджи, напротив, развит хорошо. Харак терной особенностью этого типа остеоцитов является хорошее развитие лизосомального аппарата. Ферменты лизосом постоянно секретируютсяi. межклеточное пространство. Этот тип остеоцитов является мишенью дл,ч паратгормона, поскольку содержит на цитолемме рецепторы к нему. Эт<"резорбирующие" остеоциты, осуществляющие так называемыйфизиологический, илиостеоцитарный, остеолиз. В) Третий тип остеоцитов - клст ки, расположенные в наиболее глубоких зонах кости. Это стареющие, часто подвергающиеся деструкции остеоциты(дегенеративные остеоциты). Эти клетки могут вовлекаться в биологические процессы, происходящиег, костной ткани. При этом они могут в небольшом объеме выполнять как остеолиз (разрушение кости), так и ее созидание.
Остеоциты всех описанных разновидностей лежат в лакунах, или полостях, в кости и своими отростками контактируют друг с другом (характерны контакты при помощи десмосом и нексусов). Благодаря этому создается единая сеть, система взаимодействующих клеток, в свою очередь, связанная при помощи молекул клеточной адгезии с межклеточным веществом. Остеоциты в лакунах окружены узкой зоной пеобызвествленного межклеточного вещества (остеоида). Благодаря постоянному сокращению отростков остеоцитов происходит постоянное перемещение и перемешивание тканевой жидкости, формирующейся за счет фильтрации плазмы крови сосудов кости. Это облегчает питание кости. Таким образом, функциями остеоцитов являются: 1) участие в поддержании минерального гомеостаза благодаря осуществляемому ими остеоци-тарному остеолизу; 2) обеспечение нормальной трофики кости; 3) участие в физиологической регенерации костной ткани. 3. Остеокласты. Эти клеи*.' образуются из моноцитов кропи путем их слияния с формиров;* нием гигантских многоядерны . клеток. Являютсямакрофагами костной ткани и способны разр> шать межклеточное вещество >: погибшие клетки кости. В связи< высвобождением при этом боль того количества минеральных веществ, поступающих из костной ткани в кровь, остеокласты участвуют в регуляции минерального гомеостаза.
При световой микроскопии остеокласты имеют большие раз меры и большое число (до 100) ядер (рис. 11.10 а). Характерно их расположение в костной ткани Эти клетки в отличие от остеобластов, формирующих эпителиопо-добные ассоциации, всегда располагаются поодиночкев тех участках кости, которые подвергаются резорбции. При этом клетки лежат в углублениях в костной ткани(лакунах Хаушипа), образованных за счет деятельности самих остеокластов. Цитоплазма остеокластов оксифильна или слабобазо-фильна, пенистая. При электрон-номикроскопическом исследовании установлено наличие трех зон остеокласта (рис. 11.10б, см. также рис. 11.8):
— зона щеточной каемки, илигофрированная зона, которая представляет собой многочисленные выпячивания цитолеммы (микроворсинки), увеличивающие поверхность клеток. Благодаря этой зоне остеокласт напоминает
гребенку для расчесывания волос. Эта зона прямо контактирует с разруша-Iюшейся костной тканью, в ней секретируются гидролитические ферменты, разрушающие органические вещест—зона окклюзии, или плотного прилегания к кости. В этом мест благодаря адгезивным взаимодействиям циторецепторов остеокласта с молекулами внеклеточного матрикса цитолемма остеокласта плотно прикрепляется к кости. В результате создается герметичность зоны резорбции кости —зона расположения ядер и органелл клетки. В этой зоне локализуются многочисленные ядра остеокластов и лизосомы, митохондрии, ЭПС, комплекс Гольджи, вакуоли с кислым содержимым (молочная, лимонная кислоты).Механизм разрушения кости состоит в следующем. После прикрепления остеокластов к резорбируемым участкам кости и герметизации зоны резорбции остеокласты выделяют кислое содержимое своих вакуолей в зону резорбции. Одновременно углекислый газ, образующийся в ходе метаболических реакций остеобласта, при помощи ферментакарбоангидра-зы, секретируемой остеокластами, превращается в углекислоту. Происходит резкое закисление среды в зоне резорбции. В кислой среде минеральный компонент межклеточного вещества растворяется. При этом обнажается органический компонент, который разрушается гидролитическими ферментами лизосом остеокласта. Существует и иная точка зрения на механизм резорбции кости, согласно которой с помощью лизосомальных ферментов вначале разрушается органический компонент межклеточного вещества, что ведет к высвобождению минерального компонента.
Поступление продуктов разрушения костной ткани в кровь осуществ-Iляется двумя способами.Во-первых, путем везикулярного транспорта ониIперемещаются на противоположный зоне резорбции полюс клетки, где выделяются путем экзоцитоза и далее направляются к микрососудам.Во-вторых, после накопления продуктов резорбции в лакуне в определенном участке может происходить отделение цитолеммы остеокласта от костного матрикса("временная разгерметизация" зоны остеолиза), и через этот участок происходит эвакуация продуктов распада кости в кровь.
Соли кальция поступают в кровь, при этом уровень кальция в крови повышается. Т.к. этот минерал имеет чрезвычайно важное значение для многих физиологических процессов (сокращение мышц, передача нервного импульса, свертывание крови, секреция желез и т.д.), то функция остеокластов жестко контролируется гормонами. В частности, гормон щитовидной железы Iтирокальцитонин иженские половые гормоны подавляют функции остеокластов. В то же время, гормон паращитовидной железыпаратирин способен стимулировать функцию этих клеток, причем его действие не прямое снетках отсутствуют рецепторы к наратгормону), а опосредуется через ос- теобласты, которые имеют рецепторы к данному гормону и образуют с ось окластами тесно скоординированную функциональную ось. Активностьmтеокластов повышается также лимфоцитами, продуцирующимифактор агтивации остеокластов и ряд интерлейкинов, воздействующих на пи(интерлейкины 1, 3, 6). При растяжении кости (или существенном умет. шении нагрузки на кость, что происходит при длительных космическихw,> летах, длительном постельном режиме у больных и т.д.) также отмечаете.' активация остеокластов. Это связано с пьезоэлектрическим эффектов кости (см. ниже):
появлением в межклеточном матриксе положительно! заряда, к которому тропны остеокласты.Таким образом, функциями остеокластов являются остеокластически!' остеолиз иподдержание минерального гомеостаза. В дефинитивной коетт однако, пробладает остеоцитарный (физиологический) остеолиз. МЕЖКЛЕТОЧНОЕ ВЕЩЕСТВО. Состоит из коллагеновых (оссеиновых) волокон, в состав которых входит коллагенIтипа, и основного ве щества. Межклеточное вещество сильно минерализовано и на 70% состою из солей кальция и фосфора. Эти соли образуютгидроксиапатит Са,,(Р04)6(ОН)2. 90% и более общего объема кристаллов гидроксиапатита в кости связано с поверхностью коллагеновых фибрилл и лишь менее 10% находится в основном веществе. Основное вещество состоит из гликозами ногликанов, протеогликанов и гликопротеинов. При патологии минерали зация может происходить в любой ткани при повышении в ней концепт рации ионов кальция (см.эктопическое костеобразование).
КЛАССИФИКАЦИЯ КОСТНОЙ ТКАНИ. В зависимости от строе ния межклеточного вещества различают грубоволокнистую (ретикулофиб-розную), пластинчатую идентинную костные ткани (рис.11.11, 11.12). Вгрубоволокнистой костной ткани коллагеновые (оссеиновые) волокна лежат в разных направлениях, а распределение лакун с лежащими в них остео цитами не имеет определенной закономерности. Этот вид костной ткани преобладает в скелете эмбриона (в последующем замещается пластинчатой костной тканью), у взрослых индивидуумов находится в местах прикрепления к кости связок и сухожилий, в местах швов черепа, а также как провизорный образуется при заживлении переломов (замещается пластинчатой костной тканью). Впластинчатой костной ткани оссеиновые волокна идут параллельно друг к другу и образуют структурно-функциональные единицы —остеоны. В дентинной костной ткани, которая имеется только в зубах, клетки отсутствуют, среди межклеточного вещества в канальцах находятся только клеточные отростки. Межклеточное вещество дентина представлено коллагеновыми волокнами и основным веществом (содержащим преимущественно протеогликаны), связанными с кристаллами гидро-ксиапатита. Оно пронизанодентинными канальцами, в которых лежат отростки клетокдентинобластов. Следует отметить, что многие гистологи не выделяют дентинную костную ткань как самостоятельный вид костной ткани, относя ее в варианту грубоволокнистой костной ткани.
ГРУБОВОЛОКНИСТАЯ КОСТНАЯ ТКАНЬ. Наиболее распространена в эмбриональном периоде как провизорная костная ткань. У взрослых особей она сохраняется в области швов черепа, в местах прикрепления сухожилий к кости, возникает при заживлении переломов. Состоит эта ткань из клеток и межклеточного вещества. Преобладающими клетками являются остеоциты, которые лежат в костных полостях —лакунах — и имеют длинные отростки, которыми контактируют друг с другом. Межклеточное вещество образовано коллагеновыми (оссеиновыми) волокнами и основным веществом. Основное вещество минерализовано, в его составе уменьшено содержание гликонротеинов и повышено содержание лимонной и других кислот, образующих связи с кальцием. Снаружи кость покрыта надкостницей, состоящей из фиброзного и камбиального слоев. В камбиальном слое содержатся остеобласты. Механические свойства грубоволок-нистой костной ткани по сравнению с пластинчатой снижены, поэтому в ходе эмбриогенеза и при регенерации она закономерно замешается пластинчатой костной тканью. Грубоволокнистая костная ткань может возникать в патологических условиях мри резкой периодической активации остеобластов неизвестной этиологии(болезнь Педжета).
ПЛАСТИНЧАТАЯ КОСТНАЯ ТКАНЬ. Пластинчатая костная ткань — это наиболее распространенный вид костной ткани. Из нее построен весь скелет человека. Она состоит из костных пластинок, структурно-функ- циональных единиц этой разновидности костной ткани. Каждая костная пластинка, в свою очередь, состоит из клеток остеоцитов и межклеточного вещества. Коллагеновые волокна в пластинках имеют параллельное расположение, при этом их направление в соседних пластинках противоположное. Данное обстоятельство обеспечивает прочность кости. Строение дентинной костной ткани см. выше.
СТРОЕНИЕ КОСТИ КАК ОРГАНА. Пластинчатая костная ткань является основной тканью, из которой построены кости скелета. Как органы кости содержат также и другие ткани: плотную и рыхлую волокнистые, жировую, нервную (нервные волокна и окончания). Кость имеет собственную систему кровоснабжения и лимфообращения. Разберем строение кости как органа на примере трубчатой кости (рис. 11.13, 11.14, 11.15).
Трубчатая кость состоит из диафиза и двух эпифизов. Она построена из пластинчатой костной ткани. Лишь в местах костных бугорков есть грубоволокнистая костная ткань. В кости выделяют компактное, с плотным расположением пластин (занимает 80%), и губчатое, с рыхлым, сете-видным расположением пластин, вещество (20% всей кости). Компактное вещество имеет высокую прочность, более низкий уровень метаболизма, в связи с чем обновляется медленнее и меньше подвержено возрастным изменениям. Губчатое вещество формирует трехмерную сеть анастомозирую-щих друг с другом трабекул, в состав которых входят костные пластины. Общий их объем в 10 раз больше объема компактной кости, а площадь достигает 10 м2. Между пластинами находятся остеоциты, количество которых существенно превышает таковое в компактной кости. Трабекулы губчатой кости создают каркас на котором располагается костный мозг. Губчатая кость мета болически высокоактивна, быстро обновляется и чаще, чем компактная, подвергается патологическим изменениям. Е< роль в поддержании мииераль ного гомеостаза более значительна. Вместе с тем, благодаря своей архитектонике губчатая кость обладает достаточно высокой прочностью.
1. Надкостница, в которой имеются свои два слоя: наружный фиброзный и внутренний камбиальный. Наружный слой образован плотной волокнистой неоформленной, внутренний — рыхлой волокнистой неоформленной соединительной тканями. Надкостница выполняет функции:1) опорно-механическую — связывает компактное вещество кости с окружающими тканями; 2)трофическую — содержит кровеносные сосуды, которые под прямым углом прободают кость и осуществляют ее питание; 3)регенераторную — в камбиальном слое содержит остеогенные клетки(периваскулярные клетки), при необходимости превращающиеся в активные остеобласты. В надкостнице содержатся также предшественники остеокластов. Благодаря надкостнице осуществляетсяаппозиционный рост кости (в отличие от хряща кость способна расти в толщину только за счет аппозиционного роста). Надкостница плотно прикрепляется к компактной кости при помощи коллагеновых волокон, входящих в нее под прямым углом из слоя наружных генеральных пластин (шарпеевские волокна).
2. Слой наружных генеральных пластин. Располагаются параллельно друг другу и окружают диафиз по окружности (не полиостью). Между пластинами и лакунах лежат остеоциты.
3. Остеонный слой. В этом слое есть два основных образования: остео-ны и вставочные пластины. Каждый остеон — это структурно-функциональ-ная единица кости. Он состо- Iит из канала остеона (гавер-Uсова канала), и котором ле- в жат кровеносные сосуды (арте- к риола, венула или капилляр), | питающие участок кости. Вок- | руг сосудов находится пери- § васкулярное пространство, | заполненное РВНСТ и жиро- | вой тканью. Вокруг сосудов располагаются остеогенные (пе-риваскулярные) клетки и остеокласты. Снаружи от канала остеона лежат пластины остеона, между которыми в лакунах находятся остеоциты. Наружной границей остеонов является спайная (цементирующая) линия, имеющая толщину до 2 мкм, практически лишенная волокон и представленная основным веществом. Строение остеона отражает ход его образования: активированные остеобласты последовательно, вокруг сосуда, синтезируют межклеточное вещество. Так создаются концентрические пластины, а остеобласты превращаются в остеоциты. Между остеонами лежат вставочные пластины. Это остатки старых, разрушающихся остеонов.
4. Слой внутренних генеральных пластин. Имеют строение, сходное с наружными генеральными пластинами.
5. Эндост, или внутренняя надкостница. По строению аналогична надкостнице, однако тоньше ее. В эндосте также содержатся остеогенные клетки и остеокласты.
Кроме каналов остеона, или гаперсовых каналов, в кости есть фолькма-новы, или прободающие каналы. Они идут из надкостницы перпендикулярио диафизу кости и содержат питающие кровеносные сосуды. При пом о щи фолькмановых каналов часто соединяются несколько гаверсовых кап.! лов, которые имеют направление, параллельное диафизу. Все вещество кости пронизано системой канальцев, в которых лежат отростки остеоцитоп. Эти канальцы связывают друг с другом лакуны, в которых лежат остеоциты, i: единуюлакунарно-канальцевую систему кости. Вместе с системой га версовых и фолькмановых каналов эта система формирует мощнуютранс-портно-эвакуаторную дренажную систему кости, обеспечивающую транспорт к ее структурам и от них питательных веществ, метаболитов и газов, а также минеральных веществ. Как отмечалось, в работе этой системы важная роль принадлежит подвижным отросткам остеоцитов.
Источником развития костных тканей является склеротомная мезенхима. Различают два способа развития костной ткани: прямой остеогистоге-нез, или развитие костной ткани непосредственно из мезенхимы, инепрямой остеогенез, илиразвитие костной ткани на месте хряща (который также первоначально образуется из мезенхимы).
ПРЯМОЙ (МЕМБРАНОЗНЫЙ) ОСТЕОГЕНЕЗ (рис. 11.16). Он состоит из нескольких стадий.
1. Стадия образования остеогенного островка. В месте образования кости мезенхимные клетки теряют отростки, округляются, цитоплазма их становится базофильной. Клетки делятся митозом и образуют клеточные скопления —остеогенные островки. Одновременно из окружающей мезенхимы образуются кровеносные сосуды, и островок обильно кровоснабжает-ся (рис.11.16 я).
3. Стадия кальцификации, или минерализации межклеточного вещества. Осуществляется за счет деятельности остеобластов. Механизмы минерализации кости описаны выше. Образуются фосфаты кальция, которые соединяются вместе и формируют кристаллы гидроксиапатита. В итоге формируется грубоволокиистая костная ткань.
4. Стадия перестройки грубоволокнистой костной ткани в пластинчатую. В эту стадию активируются остеокласты, которые разрушают участки грубоволокнистой костной ткани (рис. 11.16в, г). В участки разрушения (лакуны Хаушипа) прорастают кровеносные капилляры, вокруг которых концентрируются активные остеобласты, формирующие пластины остеона.Постепенно вся грубоволокнистая кость разрушается, а на ее месте образуюiся остеоны, т.е. развивается пластинчатая костная ткань. Из окружающей мг зенхимы образуется надкостница с двум'я слоями. Она обеспечивает регеж рацию и питание кости. Формируются также наружные и внутренниеremральные пластины.
5. Стадия возрастных и функциональных изменений костной ткани. ! эту стадию происходит постоянное разрушение стареющих и образовашк новых остеонов.
НЕПРЯМОЙ (ЭНДОХОНДРАЛЬНЫЙ) ОСТЕОГЕНЕЗ. Этот вил остеогенеза характерен для всех костей скелета. Он также протекает и несколько стадий (рис. 11.17, 11.18).
Из мезенхимы но общим механизмам хондрогенеза (см. хрящевую ткань) образуется гиалиновый хрящ, который формирует модель кости с диафизом и эпифизами. За счет постоянного деления хрящевых клеток в надхрящнице эта модель увеличивается в размерах и принимает форму будущей кости.
2. Стадия развития пери-хондральной костной манжетки и начала эндохондрального окостенения. В эту стадию надхрящница хрящевой модели постепенно превращается в надкостницу, которая богато васкуляризуетсяи в которой образуются остеобласты с выраженной активностью щелочной фосфатазы. Они продуцируют межклеточное вещество кости, которое минерализуется. Так образуетсяперихондральная костная манжетка, состоящая из грубоволокиис-той костной ткани (рис. 11.18а). Она называетсязоной перихонд-рального окостенения, которая есть только в диафизе. С образованием костной манжетки она нарушает питание хряща, лежащего кнутри, отсекая его от сосудов надкостницы. В результате хрящ в этих зонах начинает разрушаться. В нем появляются вакуолизированпые (пузырчатые) хондроциты. Однако достаточно быстро из надкостницы внутрь хряща по каналам, образованным в костной манжетке остеокластами (иногда их называют хондрок-ластами) врастают кровеносные капилляры, вместе с которыми мигрируют остеобласты. Остеобласты начинают синтетическую деятельность и образуют остеоны пластинчатой кости взамен разрушающегося хряща. Так формируетсязона эндохондрального окостенения, или эндохондраль-ная кость (рис. 11.18б). Образовавшись в центральной части диафиза,oh.iраспространяется в сторону эпифизов. В отличие от перихондралыюй кос ти, эндохондральная кость сразу формируется как пластинчатая кость.
3. В третью стадию две зоны окостенения — перихондральпая и эпдо хондральная — сливаются вместе. Одновременно перихондральпая кость начинает разрушаться остеокластами и перестраиваться в пластинчатую кость. В эту же стадию хрящ внутри диафиза разрушается, формируете;! костномозговая полость (рис. 11.18 е).
В нее заселяются кроветворны' клетки. Образуются наружные и внутренние генеральные пластинки. Ил этой стадии вся костная ткань диафиза представлена пластинчатой костью.
4. Стадия эндохондрального окостенения эпифизов. В предыдущей стадии основные события происходили в диафизе. Эпифизы в это вре-
мя состоят из интактной хрящевой ткани. При этом в эпифизах отчетливо выделяются четыре зоны (рис. 11.19, 11.20): 1) периферическая, илизона интактного хряща; 2) зона столбчатого хряща; 3) зона пузырчатого (дегенерирующего) хряща; 4) зона разрушения хряща. В четвертую стадию (вскоре после рождения ребенка) в хрящ эпифиза из окружающей надкостницы врастают кровеносные сосуды, вокруг которых концентрируются остеобласты, продуцирующие и минерализующие межклеточное вещество. Однако эти изменения происходят только в части зоны неизменного хряща. Остальные зоны эпифизарного хряща остаются неминерализованными. Они образуютметаэпифизарную хрящевую пластинку роста, фактически состоящую из четырех описанных выше зон. За счет размножения хрящевых клеток в этой пластинке кость растет в длину, а за счет надкостницы — в толщину.
5. Стадия минерализации метаэпифизарной пластинки роста. В эту стадию (в возрасте 20—25 лет) в метаэпифизарную иллшп^ роста врастают кровеносные ах'уды, а с ними остеобласты, которые образуют межклеточное вещество кости. Оно минерализуется. Теперь вся кость построена из костной ткани.
6. Стадия функциональной и возрастной перестройки кости. Продолжается в течение всей жизни. Суть ее заключается в постоянном разрушении старых и формировании новых остеонов, нарастании их количества и размеров при физической нагрузке и уменьшении при гипокинезии.
РЕГУЛЯЦИЯ МИНЕРАЛИЗАЦИИ КОСТИ И ХРЯЩА. Процесс минерализации кости и хряща находится под строгим контролем организма и зависит от многих факторов. Особенно велика роль эндокринной системы в регуляции образования кости. 1. Гормон паращитовидных желез паратгормон (паратирин) опосредс ванно через остеобласты стимулирует остеокласты, что ведет к резорбции ми нерального и органического компонентов кости и повышению уровня каль ция в крови. Одновременно паратирин подавляет функции остеобластов.
2. Гормон щитовидной и паращитовидных желез кальцитонин оказывает на клетки костной ткани противоположный эффект: тормозит актин ность остеокластов и стимулирует функцию остеобластов. В результат iэтого в костной ткани стимулируются процессы остеогенеза.
3. Гормон щитовидной железы тироксин у молодых особей ускоряет образование и созревание новой костной ткани. У пожилых людей он вызывает резорбцию кости.
4. Соматотропин (гормон роста передней доли гипофиза) стимулируем остеобласты, а также деление хрящевых клеток в пластинке роста. Одновременно он подавляет ее минерализацию.
5. Половые гормоны оказывают на развитие кости сложное влияние. С одной стороны, они стимулируют остеобласты, подавляют остеокласты и способствуют росту костей в длину. С другой стороны, резкое повышение содержания половых гормонов в крови при преждевременном половом созревании, вызванном опухолями половых желез и др., ведет к минерализации пластинок роста в костях и низкорослости. При гииогонадизме, напротив, отмечается гигантизм.
6. Кортизол (гормон коры надпочечников) снижает синтез коллагена в костной ткани и способствует развитию остеопороза (уменьшению плотности костной ткани).
7. Гормон кальцитриол (витамин D3) стимулирует поглощение кальция костной тканью, биосинтез органического матрикса кости.
Витамины также играют важную роль в регуляции остеогенеза. Особенно важен витамин С, который стимулирует остеобласты и синтез ими межклеточного вещества кости. Недостаток его (при котором развивается цинга) ведет к дефектам коллагеногенеза и синтеза гликозаминогликанов. Витамин А также стимулирует остеобласты и подавляет остеокласты. При его недостатке нарушается минерализация кости, а при избытке происходит ее резорбция.
РЕГЕНЕРАЦИЯ КОСТНОЙ ТКАНИ. Физиологическая регенерация костной ткани заключается в постоянной перестройке кости. Она призвана не только привести в соответствие строение кости с нагрузками на нее, но и поддерживать минеральный гомеостаз. Осуществляется за счет соче-танной деятельности остеобластов и остеокластов, которые находятся в надкостнице, эндосте и каналах остеонов. В норме большая часть их пребывает в состоянии покоя и активируется при инициации перестройки. Активация остеобластов ведет к одновременной активации остеокластов и наоборот (функциональное сопряжение остеобластов и остеокластов). За счет деятельности этой функциональной пары клеток происходит следующая цепь событий в кости: активация клеток, осуществляющих разрушение кости —> резорбция старой кости-» реверсия (переход от резорбции кости к остеосигенезу) —> остеогенез.
Репаративная регенерация костной ткани происходит после переломов. Осуществляется за счет деятельности остеобластов, формирующихся из остеогенных (периваскулярных) клеток. Регенерация кости протекает в
несколько стадий.
1. Стадия разрушения поврежденных структур кости и деления остеогенных клеток. В эту стадию происходит разрушение поврежденных элементов кости и возникает воспалительная реакция. Одновременно пери-васкулярные клетки превращаются в остеобласты, которые приступают к синтезу межклеточного вещества.
2. Стадия образования и дифференцировки тканевых структур кости. Остеобласты выселяются в место перелома и образуют компоненты межклеточного вещества. Одновременно с образованием остеобластов в силу генетического родства формируются линии фибробластов и хондробластов, причем хондроидная ткань получает преимущественное развитие. В результате формируютсясоединительнотканная или (чаще)хрящевая мозоли.
3. Стадия первичной костной структуры. Хрящевая (соединительнотканная) мозоль минерализуется и превращается вкостную мозоль. Одновременно восстанавливается сосудистая система кости.
4. Стадия окончательной перестройки регенерата. Вначале костная мозоль состоит из грубоволокнистой костной ткани, которая потом заменяется на пластинчатую. Происходит резорбция избытка кости и восстановление костномозговой полости.
Приведенная схема регенерации кости наблюдается при так называемом вторичном костном сращении, когда костные отломки недостаточно сближены и закреплены. Эта ситуация встречается в клинике наиболее часто. При хорошей иммобилизации и репозиции (сопоставлении) отл.омков регенерация происходит более быстро и экономно с незначительным разрушением костной ткани по обе стороны от перелома. При этом практически сразу образуется пластинчатая костная ткань без формирования соединительнотканной и хрящевой мозолей(первичное костное сращение).
Стимуляция регенерации кости. Стимуляция регенерации костной ткани может осуществляться применением анаболических гормонов, витаминов, препаратов ДНК, РНК и др. Она происходит также при введении в зону дефекта костных опилок, а также трансплантации аллогенной кости. Широко используется также применение методадистракции (растяжения) кости по Г.А. Илизарову (аппарат Илизарова). Метод основан напьезоэлектрическом эффекте кости: ее растяжение вызывает формирование положительного заряда, а сжатие — отрицательного электрического заряда. К положительному заряду тропны остеокласты, которые при растяжении и,: чинают осуществлять резорбцию костной ткани. Однако в силуcoup;! жения функции остеобластов и остеокластов через определенное врем -происходит активация последних и выработка ими межклеточного вещг ства. Повторная дистракцпя ведет к повторению цикла. В результате пси ледовательных дистракций происходит постепенное новообразование и о. зревание костных структур, увеличивается межотломковый костный рек нерат, который в средней части сохраняет соединительнотканную струкг> ру, на основе которой и происходит костеобразование. Этот метод позж ляет, во-первых, эффективно лечить переломы, т.к. аппарат Илизароп. позволяет хорошо сопоставить и иммобилизировать отломки, в результа те очень рано создается возможность включения конечности в функции (нагрузка на нее ведет к активации остеобластов). Во-вторых, метод по зволяет увеличивать длину конечностей для исправления дефектов скелета.
РОСТ КОСТИ. Рост кости в длину происходит за счет метаэпифи зарной пластинки роста. Наблюдается до периода полового созревания после наступления которого половые гормоны способствуют подавлении! митозов клеток и минерализации хряща метаэпифизарной пластинки Рост кости в толщину происходит за счет надкостницы. При этом физический труд способствует размножению клеток в надкостнице, и кость ста новится толще.
ЭКТОПИЧЕСКИЙ РОСТ КОСТИ. Эктопический остеогенез.- это образование кости в нетипичных местах. Наиболее часто он имеет место при дистрофическом обызвествлении омертвевших тканей или тканей, находящихся в состоянии глубокой дистрофии. При этом большое значение имеет ощелачивание среды и увеличение активности щелочной фосфата-зы, выделяемой из погибших клеток. Эктопическое костеобразование мо жет иметь место в оболочках глаза, стенках сосудов, почках, щитовидной железе, сухожилиях, поперечнополосатых мышцах, рубцах: зоне инфаркта миокарда, зонах хронического воспаления и др.
Причины эктопического остеогенеза до конца не исследованы. В условиях эксперимента воспроизвести его до последнего времени было достаточно трудно. Существуют два методических приема для получения эктопической кости: 1) трансплантация в соединительную ткань слизистой оболочки моченого пузыря; 2) трансплантация кусочка кости с убитыми костными клетками.
В настоящее время установлено, что причиной эктопического костеоб-разования является стимуляция при этом выделения индукторов остеогенеза. Такими индукторами являются прежде всего морфогенетические белки кости (МБК). Они способствуют превращению стволовых клеток РВНСТ в остеогениые клетки. В настоящее время эти белки выделены и используются для изучения эктопического остеогенеза. Их введение в РВНСТ вызывает костеобразование.
Эктопический остеогенез имеет существенное клиническое значение, т.к. приводит к нарушению функций органов, в которых происходит, и может явиться причиной смерти.
ВОЗРАСТНЫЕ ИЗМЕНЕНИЯ ХРЯЩЕВЫХ И КОСТНЫХ ТКАНЕЙ. У молодых индивидуумов в костной ткани преобладают анаболические процессы, процессы созидания. В межклеточном веществе отмечается преобладание органического компонента над минеральным. В результате этого кости детей гибкие, меньше подвергнуты переломам, а если таковые имеют место, то происходят поднадкостнично, по тину "зеленойветки", т.е. без смещения костных отломков. Максимум массы костной ткани достигается примерно к 20—25-ти годам. После этого возраста процессы резорбции костной ткани начинают преобладать над процессами костеоб-разования. С возрастом количество минеральных веществ увеличивается, они преобладают над органическими, что обусловливает повышенную ломкость костей. Этому же способствуетостеонороз — разрежение костной ткани при старении. Его развитию способствуют: нарастающая атрофия половых желез и снижение в результате концентрации половых гормонов (особенно эстрогенов, поэтому у женщин часто наблюдается менопаузаль-ный остеонороз); снижение функциональной нагрузки на кость, что ведет к активации остеокластов. У старых людей в результате остеолиза резко увеличивается диаметр гаверсовых каналов, что ведет к уменьшению общей массы костной ткани. Существенно нарушается заживление переломов костей.