
Физика лекции / Электрический заряд
.docЭлектрический заряд – физическая величина, характеризующая способность тел вступать в электромагнитные взаимодействия. Измеряется в Кулонах.
Элементарный электрический заряд – минимальный заряд, который имеют элементарные частицы (заряд протона и электрона).
e =
Кл
Тело имеет заряд, значит имеет лишние или недостающий электроны. Такой заряд обозначается q = ne. (он равен числу элементарных зарядов).
Наэлектризовать тело – создать избыток и недостаток электронов. Способы: электризация трением и электризация соприкосновением.
Точечный заряд – заряд тела, которое можно принять за материальную точку.
Пробный заряд ()
– точечный, малый по величине заряд,
обязательно положительный – используется
для исследования электрического поля.
Закон сохранения заряда: в изолированной системе алгебраическая сумма зарядов всех тел сохраняется постоянной при любых взаимодействиях этих тел между собой.
Закон Кулона: силы взаимодействия двух точечных зарядов пропорциональны произведению этих зарядов, обратно пропорциональны квадрату расстояния между ними, зависят от свойств среды и направлены вдоль прямой, соединяющей их центры.
,
где
Ф/м,
Кл2/нм2 – диэлектр. пост.
вакуума
- относит. диэлектрическая проницаемость
(>1)
- абсолютная диэлектрическая прониц.
среды
Электрическое поле – материальная среда, через которую происходит взаимодействие электрических зарядов.
Свойства электрического поля:
-
Электрическое поле существует вокруг любого заряда. Если заряд неподвижен – поле электростатическое.
-
Электрическое поле действует на любой помещённый в него заряд согласно закону Кулона. Обнаружить электрическое поле можно только по его действию на другие заряды.
-
Электрическое поле существует в любой среде и распространяется с конечной скоростью:
м/с.
-
Электрическое поле не имеет чётких границ. Действие его уменьшается при увеличении расстояния от заряда, его создающего.
Характеристики электрического поля:
-
Напряжённость (E) – векторная величина, равная силе, действующей на единичный пробный заряд, помещённый в данную точку.
Измеряется в Н/Кл.
Направление – такое же, как и у действующей силы.
Напряжённость не зависит ни от силы, ни от величины пробного заряда.
Суперпозиция электрических полей: напряжённость поля, созданного несколькими зарядами, равна векторной сумме напряжённостей полей каждого заряда:
Графически электронное поле изображают с помощью линий напряжённости.
Линия напряжённости – линия, касательная к которой в каждой точке совпадает с направлением вектора напряжённости.
Свойства линий напряжённости: они не пересекаются, через каждую точку можно провести лишь одну линию; они не замкнуты, выходят из положительного заряда и входят в отрицательный, либо рассеиваются в бесконечность.
Виды полей:
-
Однородное электрическое поле – поле, вектор напряжённости которого в каждой точке одинаков по модулю и направлению.
+ -
+ -
+ -
+ -
-
Неоднородное электрическое поле – поле, вектор напряжённости которого в каждой точке неодинаков по модулю и направлению.
-
Постоянное электрическое поле – вектор напряжённости не изменяется.
-
Непостоянное электрическое поле – вектор напряжённости изменяется.
-
Работа электрического поля по перемещению заряда.
,
где F – сила, S
– перемещение,
- угол между F и S.
Для однородного поля: сила постоянна.
Работа не зависит от формы траектории; работа по перемещению по замкнутой траектории равна нулю.
Для неоднородного поля:
-
Потенциал электрического поля – отношение работы, которое совершает поле, перемещая пробный электрический заряд в бесконечность, к величине этого заряда.
- потенциал – энергетическая
характеристика поля. Измеряется в
Вольтах
Разность потенциалов:
Если
,
то
,
значит
- градиент потенциала.
Для однородного поля: разность потенциалов
– напряжение:
.
Измеряется в Вольтах, приборы –
вольтметры.
Электроёмкость – способность тел накапливать электрический заряд; отношение заряда к потенциалу, которое для данного проводника всегда постоянно.
.
Не зависит от заряда и не зависит от потенциала. Но зависит от размеров и формы проводника; от диэлектрических свойств среды.
, где r – размер,
- проницаемость среды вокруг тела.
Электроёмкость увеличивается, если рядом находятся любые тела – проводники или диэлектрики.
Конденсатор – устройство для
накопления заряда. Электроёмкость:
Плоский конденсатор – две металлические пластины, между которыми находится диэлектрик. Электроёмкость плоского конденсатора:
,
где S – площадь пластин,
d – расстояние между
пластинами.
Энергия заряженного конденсатора равна работе, которую совершает электрическое поле при переносе заряда с одной пластины на другую.
Перенос малого заряда
,
напряжение измениться на
,
совершится работа
.
Так как
,
а С = const,
.
Тогда
.
Интегрируем:
Энергия электрического поля:
,
где V=Sl –
объём, занимаемый электрическим полем
Для неоднородного поля:
.
Объёмная плотность электрического
поля:
.
Измеряется в Дж/м3.
Электрический диполь – система, состоящая из двух равных, но противоположных по знаку точечных электрических зарядов, расположенных на некотором расстоянии друг от друга (плечо диполя - l).
Основная характеристика диполя –
дипольный момент – вектор, равный
произведению заряда на плечо диполя,
направленный от отрицательного заряда
к положительному. Обозначается
.
Измеряется в Кулон-метрах.
Диполь в однородном электрическом поле.
На каждый из зарядов диполя действуют
силы:
и
.
Эти силы противоположно направлены и
создают момент пары сил – вращающий
момент:
,
где
М – вращающий момент F – силы, действующие на диполь
d – плечо сил l – плечо диполя
p – дипольный момент E – напряжённость
- угол между p и Е q
– заряд
Под действием вращающего момента, диполь повернётся и установится по направлению линий напряжённости. Векторы p и Е будут параллельны и однонаправлены.
Диполь в неоднородном электрическом поле.
Вращающий момент есть, значит диполь повернётся. Но силы будут неравны, и диполь будет двигаться туда, где сила больше.
-
градиент напряжённости. Чем выше
градиент напряжённости, тем выше боковая
сила, которая стаскивает диполь. Диполь
ориентируется вдоль силовых линий.
Собственное поле диполя.
Но
.
Тогда:
.
Пусть диполь находится в точке О, а его плечо мало. Тогда:
.
Формула получена с учётом:
Таким образом разность потенциалов зависит от синуса половинного угла, под которым видны точки диполя, и проекции дипольного момента на прямую, соединяющие эти точки.
Диэлектрики в электрическом поле.
Диэлектрик – вещество, не имеющее свободных зарядов, а значит и не проводящее электрический ток. Однако на самом же деле проводимость существует, но она ничтожно мала.
Классы диэлектриков:
-
с полярными молекулами (вода, нитробензол): молекулы не симметричны, центры масс положительных и отрицательных зарядов не совпадают, а значит, они обладают дипольным моментом даже в случае, когда электрического поля нет.
-
с неполярными молекулами (водород, кислород): молекулы симметричны, центры масс положительных и отрицательных зарядов совпадают, а значит, они не имеют дипольного момента при отсутствии электрического поля.
-
кристаллические (хлорид натрия): совокупность двух подрешёток, одна из которых заряжен положительно, а другая – отрицательно; в отсутствии электрического поля суммарный дипольный момент равен нулю.
Поляризация – процесс пространственного разделения зарядов, появления связанных зарядов на поверхности диэлектрика, что приводит к ослаблению поля внутри диэлектрика.
Способы поляризации:
1 способ – электрохимическая поляризация:
На электродах – движение к ним катионов
и анионов, нейтрализация веществ;
образуются области положительных и
отрицательных зарядов. Ток постепенно
уменьшается. Скорость установления
механизма нейтрализации характеризуется
временем релаксации – это время, в
течение которого ЭДС поляризации
увеличится от 0 до максимума от момента
наложения поля.
= 10-3-10-2 с.
2 способ – ориентационная поляризация:
На поверхности диэлектрика образуются
некомпенсированные полярные, т.е.
происходит явление поляризации.
Напряжённость внутри диэлектрика меньше
внешней напряжённости. Время релаксации:
= 10-13-10-7 с. Частота 10 МГц.
3 способ – электронная поляризация:
Характерна для неполярных молекул,
которые становятся диполями. Время
релаксации:
=
10-16-10-14 с. Частота 108
МГц.
4 способ – ионная поляризация:
Две решётки (Na и Cl) смещаются относительно друг друга.
Время релаксации:
=10-8-10-3с.
Частота 1 КГц
5 способ – микроструктурная поляризация:
Характерен для биологических структур, когда чередуются заряженные и незаряженные слои. Происходит перераспределение ионов на полупроницаемых или непроницаемых для ионов перегородках.
Время релаксации:
=10-8-10-3с.
Частота 1 КГц
Числовые характеристики степени поляризации:
-
вектор поляризованности
. Измеряется в Кл/л
-
относительная диэлектрическая проницаемость
раз
-
Дисперсия – зависимость от частоты.
Электрический ток – это упорядоченное движение свободных зарядов в веществе или в вакууме.
Условия существования электрического тока:
-
наличие свободных зарядов
-
наличие электрического поля, т.е. сил, действующих на эти заряды
Сила тока – величина, равная заряду, который проходит через любое поперечное сечение проводника за единицу времени (1 секунду)
Измеряется в Амперах.
n – концентрация зарядов
q – величина заряда
S – площадь поперечного сечения проводника
- скорость направленного движения
частиц.
Скорость движения заряженных частиц в электрическом поле небольшая – 7*10-5 м/с, скорость распространения электрического поля 3*108 м/с.
Плотность тока – величина заряда, проходящего за 1 секунду через сечение в 1 м2.
.
Измеряется в А/м2.
- сила, действующая на ион со стороны эл
поля равна силе трения
- подвижность ионов
- скорость направленного движения ионов
=подвижность, напряжённость поля
Удельная проводимость электролита тем больше, чем больше концентрация ионов, их заряд и подвижность. При повышении температуры возрастает подвижность ионов и увеличивается электропроводность.