- •Тема 1. Введение………………………………………………………………….4
- •Тема 1. Введение.
- •Тема 2. Физические основы горения.
- •2.1. Свойства газов.
- •2.2. Свойства газовых смесей.
- •3. Парциальные давление и объем.
- •2.3. Свойства жидкостей.
- •2.4. Свойства сжиженных газов.
- •2.5. Свойства твердых веществ.
- •Тема 3. Химические основы горения.
- •3.1. Химизм реакций горения.
- •3.2.Теплосодержание веществ.
- •3.3. Тепловой эффект реакции.
- •3.4. Кинетические основы газовых реакций.
- •3.5. Энергия активации реакции.
- •3.6. Катализ.
- •3.7. Адсорбция.
- •Тема 4. Виды горения.
- •4.1. Горение газообразных, жидких и твердых веществ.
- •4.2. Гомогенное и гетерогенное горение.
- •4.3. Диффузионное и кинетическое горение.
- •4.4. Нормальное горение.
- •4.5. Дефлаграционное (взрывное) горение.
- •4.6. Детонационное горение.
- •Тема 5. Показатели пожаровзрывоопасности веществ.
- •5.1. Общие показатели для горючих веществ и видов горения.
- •5.2. Показатели взрывопожароопасности газо-, паро- и пылевоздушных смесей.
- •5.3. Показатели пожароопасности твердых компактных и пыле- видных веществ.
- •Тема 6. Возникновение горения.
- •6.1. Тепловое самовоспламенение (тепловой взрыв).
- •6.2. Самовозгорание.
- •6.3. Цепное самовоспламенение (цепной взрыв).
- •6.4. Зажигание.
- •Тема 7. Распространение пламени.
- •7.1. Тепловая теория горения.
- •7.2. Горение в замкнутом объеме.
- •7.3. Движение газов при горении.
- •7.4. Факторы ускорения горения.
- •7.5. Условия возникновения взрыва.
- •Тема 8. Ударные волны и детонация.
- •8.1. Ударные волны в инертном газе.
- •8.2. Воспламенение при быстром сжатии.
- •8.3. Возникновение детонации.
- •8.4. Стационарный режим распространения детонации.
- •8.5. Определение скорости детонации.
- •8.6. Вырождение детонации.
- •Тема 9. Погасание пламени (прекращение горения).
- •9.1. Концентрационные пределы распространения пламени.
- •9.2.Общие закономерности для пределов распространения пламени.
- •9.3. Затухание пламени в узких каналах.
- •9.5. Закономерности для точки флегматизации.
- •9.6. Механизм флегматизации взрывоопасных смесей.
9.6. Механизм флегматизации взрывоопасных смесей.
Достаточно широко используется метод обеспечения взрывобезопасно-сти, основанный на снижении концентрации горючего меньшей нижнего концентрационного предела. Для его объяснения и обоснования проанализи-руем более подробно принципы флегматизации взрывчатых смесей.
Тепловая флегматизация. Флегматизация горения различными добав-ками известна давно. Если ограничиться рассмотрением класса тепловых флегматизаторов, понижающих температуру горения, то этот класс следует в свою очередь разделить на две группы – инертных компонентов (СО2, Н2О, N2) и добавок сложных горючих веществ, флегматизирующих горение бога-тых смесей. Инертные добавки флегматизируют горение, воспринимая часть теплового эффекта реакции при сгорании; однако у этих флегматизаторов происходит только увеличение запаса физического тепла, но не химическое превращение.
Более сложную природу имеет действие добавок органических горючих флегматизаторов в пламенах богатых взрывчатых смесей 1 и распадающихся эндотермических соединений. Как и чисто инертные добавки, они не оказы-вают специфического химического влияния на кинетику реакции в пламени, а только понижают температуру горения. Однако такие добавки флегматизи-руют горение гораздо активнее, чем инертные компоненты. Это обусловлено не только (и даже не столько) их большей теплоемкостью, которая, действии-тельно, сильно возрастает с усложнением молекулы, сколько способностью этих веществ к эндотермическим превращениям при высоких температурах. Поэтому сложные соединения, распадающиеся в пламени, способны флегма-тизировать горение уже в значительно меньших концентрациях, чем инерт-ные добавки.
Наиболее активным флегматизатором значительной части технологиче-ских процессов оказывается само избыточное горючее. Использование избы-точного горючего для флегматизации к тому же наиболее просто в отношении требований технологии: отпадает необходимость введения в реакционную среду посторонних продуктов.
Распад избыточного горючего в пламенах богатых смесей является ре-шающим фактором, определяющим значения пределов распространения пла-мени.
Применение ингибиторов. Химически активные добавки уже в кон-центрациях порядка 1% могут оказывать еще большее гасящее воздействие и сужать пределы, чем избыточное горючее. Это наблюдалось, например, при добавлении к воздушным смесям углеводородов, водорода, окиси углерода, галоидсодержащих продуктов: CH2ClBr, CH3Br, а также СС14 и С12.
Механизм воздействия химически активных флегматизаторов на горе-ние заключается в обрыве реакционных цепей основного процесса окисления горючего. Ингибиторы конкурируют с окисляющимися компонентами во взаимодействии с активными центрами цепной реакции. В результате более высокого, чем у горючего, химического сродства к активным промежуточным продуктам реакции окисления молекулы ингибитора или продуктов его рас-пада энергично реагируют с активными центрами, превращая их в устойчи-вые соединения и прекращая развитие реакционной цепи. Поэтому добавки ингибитора заметно понижают концентрацию активных центров. Так, галои-ды и галоидпроизводные активно реагируют с атомарным водородом, кото-рый принимает участие в большинстве цепных процессов окисления.
Основное применение химически активных флегматизаторов ограничи-вается их использованием в предохранительных приспособлениях. В аварий-ных случаях эти продукты быстро вводят в больших количествах в зону горе-ния или во взрывоопасную среду, которая при этом достаточно быстро пре-вращается в негорючую. Таково использование различных галоидпроизвод-ных в пламегасящих составах.
Так, огнетушащая эффективность галоидов повышается при замещении в них атома водорода на атом галогена по ряду F ≤ Cl << Br ≥ I.
Механизм процесса заключается в регенеративном ингибировании, то есть в восстановлении исходного вещества или образования новых промежу-точных компонентов, способных достаточно эффективно связывать активные центры цепной реакции. Общий пример такого типа:
Hα + x → Hx + α,
где: х – атом галогена;
Нα – водородосодержащее вещество.
Общепринятый механизм действия ингибиторов состоит в том, что ра-дикалы Н+, ОН− или О−2, реагируя с ингибитором или его производным, исче-зают и заменяются малоактивными атомами.
Например, считают, что при использовании в реакции горения водорода простейшего ингибитора НВr ингибирование происходит по схеме:
Н + НВr → H2 + Br
OH + HBr → H2O + Br
O + HBr = OH + Br
Регенерирование ингибитора идет по реакции:
Br + H + M = HBr + M
и цикл повторяется. Благодаря этим процессам снижается скорость пламени и сужаются пределы воспламенения.