Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
эконометрика-раздача / УМК-эконометрика-магистры.doc
Скачиваний:
59
Добавлен:
09.05.2015
Размер:
5.46 Mб
Скачать

2.1. Определения. Линейная регрессионная модель для случая одной факторной переменной.

Рассмотрим сначала однофакторную регрессионную модель.

В этом случае имеется n пар наблюдений (xi,yi), i=1,2,…,n, над некоторыми случайными величинами Х={xi} и Y={yi}. Эти наблюдения можно представить точками на плоскости с координатами (xi,yi), получая так называемую диаграмму рассеяния. Задача построения регрессионной модели заключается в том, что необходимо подобрать некоторую кривую (график соответствующей функции) таким образом, чтобы она располагалась как можно “ближе” к этим точкам. Такого рода кривую называют эмпирической или аппроксимирующей кривой. Весьма часто тип эмпирической кривой определяется экспериментальными или теоретическими соображениями (исходя из законов экономической теории), в противном случае выбор кривой осуществить довольно трудно. Иногда точки на диаграмме рассеяния располагаются таким образом, что не наблюдается никакого их группирования, и, соответственно, нет никаких оснований предполагать наличие в наблюдениях какой-либо взаимозависимости.

Таким образом, результатом исследования статистической взаимозависимости на основе выборочных данных является построение уравнений регрессии вида y=f(x).

В самом простом случае предполагается, что f задает уравнение прямой f(x)=0+1х. Модель в этом случае имеет вид

уi=0+1хi+i (i=1,2,…,n). (2)

Здесь i являются вертикальными уклонениями точек (xi,yi) от аппроксимирующей прямой. Вопрос о нахождении формулы зависимости можно ставить после положительного ответа на вопрос о существования такой зависимости, но эти два вопроса можно решать и одновременно.

Для ответа на поставленные вопросы существуют специальные методы и, соответственно, показатели, значения которых определенным образом свидетельствуют о наличии или отсутствии линейной связи между переменными. Такими показателями являются коэффициент корреляции величин Х и Y, а также коэффициенты линейной регрессии 0 и 1, их стандартные ошибки и t-статистики, по значениям которых проверяется гипотеза об отсутствии связи величин Х и Y.

Угловой коэффициент 1 прямой линии регрессии Y на X называют коэффициентом регрессии Y на X и обозначают yx.

Выражение х2 = –()2 есть выборочная дисперсия Х (или квадрат выборочного среднего квадратического отклонения).

Выборочный коэффициент корреляции определяется равенством

ryx =(ху ху )/(хy), (3)

где y есть выборочное среднее квадратическое отклонение Y.

(Верхняя черта, как это принято в теории вероятностей и математической статистике, означает среднее значение выборочной совокупности, в данном случае ).

Коэффициент корреляции измеряет силу (тесноту) линейной связи между Y и X. Он является безразмерной величиной, не зависит от выбора единиц измерения обеих переменных. Для него всегда выполняется 0  ryx  1, и чем ближе его значение к 1, тем сильнее линейная связь. Коэффициент корреляции будет положительным, если зависимость переменных Х и Y прямо пропорциональная, и отрицательным, – если обратно пропорциональная.

При близости кнулю коэффициента корреляции, например, величин уровней инфляции и безработицы (что имело место фактически в экономике США в 1970-х – 1980-х годах) нужно не говорить сразу о независимости этих показателей, а попытаться построить более сложную (не линейную) модель их связи.

Если формула (1) линейна, то речь идет о линейной регрессии. Формула статистической связи двух переменных называется парной регрессией, зависимость от нескольких переменных – множественной регрессией. Например, Кейнсом была предложена линейная модель зависимости частного потребления С от располагаемого дохода Х: С=С0+ С1Х, где С0 >0 – величина автономного потребления (при уровне дохода Х=0), 1>C1>0 – предельная склонность к потреблению (C1 показывает, на сколько увеличится потребление при увеличении дохода на единицу).

В случае парной линейной регрессии имеется только один объясняющий фактор х и линейная регрессионная модель записывается в следующем виде:

у=0+1х+, (4)

где  – случайная составляющая с независимыми значениями М=0, D= 2.

    1. Метод наименьших квадратов (МНК).

Оценка параметров регрессии 0 и 1 производится по наблюденным значениям зависимой и объясняющей переменным (xi,yi), i=1,2,…,n, где n – число пар наблюдений (объем выборки). Рассматриваются n уравнений уi=0+1хi+i, где уклонения i является следствием реализации случайной составляющей, и выбирают такие значения 0 и 1, которые минимизируют сумму квадратов этих уклонений, т.е. ищется минимум

Q=ii2= i(уi – 0 – 1хi)2 (5)

по отношению к параметрам 0 и 1. Заметим, что указанный метод наименьших квадратов (МНК) может быть применен к любой кривой регрессии f(x). “Наилучшая” по МНК прямая линия всегда существует, но даже наилучшая не всегда является достаточно хорошей. Если в действительности зависимость у= f(x) является, например, квадратичной, то ее не сможет адекватно описать никакая линейная функция, хотя среди всех линейных функций обязательно найдется “наилучшая”.

Для отыскания минимума берутся частные производные Q по искомым параметрам (в данном случае по 0 и 1) и приравниваются к нулю. После выполнения элементарных преобразований получают так называемую систему нормальных уравнений, из которой и находятся искомые параметры. Для парной линейной регрессии получаем

1=()/( – ()2), (6)

0=–1 =(()  )/( – ()2),

где =xiyi/n, =xi/n, =yi/n, =хi2/n.

Коэффициент 1 называется коэффициентом регрессии и обозначается yx. Из (2) и (6) следует, что

yx = ryxy /х. (7)

Если выборка имеет достаточно большой объем и хорошо представляет генеральную совокупность (репрезентативна), то заключение о тесноте линейной зависимости между признаками, полученными по данным выборки, в известной степени может быть распространено и на генеральную совокупность, т.е. можно выдвинуть гипотезу об имеющейся линейной связи во всей генеральной совокупности вида у=0+1х.

Соседние файлы в папке эконометрика-раздача