- •Федеральное агентство по образованию
- •Южно-уральский государственный университет
- •Факультет экономики и предпринимательства
- •Кафедра «предпринимательство и менеджмент»
- •Учебно-методический комплекс
- •Оглавление
- •Цель, задачи и содержание дисциплины
- •Календарно-тематический план работы студента
- •Рабочая программа
- •Федеральное агентство по образованию
- •Южно-уральский государственный университет
- •Факультет экономики и предпринимательства
- •Кафедра «предпринимательство и менеджмент»
- •Рабочая программа
- •1. Введение
- •2. Разделы дисциплины, виды и объем занятий
- •3. Требования к практическим видам занятий при освоении дисциплины
- •4. Рекомендуемая литература
- •Требования к практическим видам занятий при освоении дисциплины
- •Методические рекомендации
- •1. Методические рекомендации по изучению теоретического материала.
- •2. Методические рекомендации по решению практических задач.
- •3. Методические рекомендации по выполнению контрольных работ.
- •4. Требования к критериям оценки выполнения практических заданий, контрольных работ.
- •Краткий курс лекций
- •1. Предмет, метод и задачи курса «Эконометрика».
- •1.1. Соотношения между экономическими переменными.
- •2.1. Определения. Линейная регрессионная модель для случая одной факторной переменной.
- •2.3. Свойства оценок мнк.
- •2.4.Регрессия по эмпирическим (выборочным) данным и теоретическая регрессия.
- •Таким образом, получено уравнение регрессии
- •2.5. Экономическая интерпретация параметров линейного уравнения регрессии.
- •2.6. Измерение и интерпретация случайной составляющей.
- •3. Линейная модель множественной регрессии
- •3.1. Обоснование и отбор факторов при построении множественной регрессии.
- •3.2. Линейная регрессионная модель со многими переменными.
- •3.3. Оценка и интерпретация параметров.
- •3.4. Описание связей между макроэкономическими переменными.
- •3.5. Формирование регрессионных моделей на компьютере с помощью ппп Excel
- •3.5.1. Однофакторная регрессия.
- •3.5.2. Многофакторная регрессия.
- •4. Нелинейные модели регрессии и их линеаризация
- •4.1. Мультипликативные модели регрессии и их линеаризация.
- •4.2. Гиперболическая и логарифмическая регрессии. Полиномиальная и кусочно-полиномиальная регрессия.
- •4.3. Экспоненциальная и степенная регрессии.
- •5.1. Доверительные интервалы для коэффициентов: реальные статистические данные
- •5.2. Проверка статистических гипотез о значениях коэффициентов
- •5.3. Проверка значимости параметров линейной регрессии и подбор модели с использованием f-критериев
- •5.4. Проверка значимости и подбор модели с использованием коэффициентов детерминации. Информационные критерии
- •5.6. Обобщенный метод наименьших квадратов. Метод Главных Компонент.
- •5.7.Прогнозирование. Доверительный интервал прогноза.
- •6. Временные ряды.
- •6.1. Характеристики временных рядов. Выявление тренда в динамических рядах экономических показателей.
- •6.3. Статистика Дарбина-Уотсона.
- •7.Задачи экономического анализа, решаемые на основе регрессионных эконометрических моделей
- •7.1. Измерение тесноты связи между результативным и факторными признаками.
- •18. Имеются данные о рынке строящегося жилья в Санкт-Петербурге (по состоянию на декабрь 2006 г.).
- •Вопросы к экзамену(зачету) по дисциплине «Эконометрика».
- •Контрольные задания по дисциплине «Эконометрика».
- •Рекомендуемая литература
4. Требования к критериям оценки выполнения практических заданий, контрольных работ.
Для текущего контроля достаточно представить пять выполненных заданий по каждой теме. Оценка выполнения практического задания проводится по 50-бальной системе (10 баллов на каждую из пяти задач). 40-50 баллов, набранных студентом, соответствуют оценке "отлично", 30-39 баллов – оценке "хорошо", 20-29 баллов – оценке "удовлетворительно", 0-19 баллов – оценке "неудовлетворительно".
В случае если задача решена в целом правильно, но допущены 1-2 арифметические ошибки, либо не объяснен какой-либо ключевой момент решения, решение оценивается в 8-10 баллов. Если решение задачи не доведено до конца, либо окончание решения ошибочно, но имеется правильный план решения и получены существенные, важные для решения результаты, задача оценивается в 4-8 баллов. Если задача не решена, отсутствует общий план решения либо допущены грубые ошибки, но есть продвижения в нужном направлении или правильно сделаны отдельные шаги решения, задача оценивается в 1-4 балла.
Контрольная работа предназначена для итогового контроля знаний и навыков студентов по всем темам дисциплины. В отличие от практических заданий, оценка за каждую задачу контрольной работы - зачтено или не зачтено.
Оценка зачтено ставится за правильное и полное решение задачи, допускаются небольшие погрешности в изложении и вычислениях. Оценка за контрольную работу – зачтено, если зачтены все контрольные задания по всем темам дисциплины.
Если практические задания по всем темам дисциплины выполнены на оценку не ниже «удовлетворительно», и получена оценка «зачтено» за контрольную работу, то студент допускается к итоговой аттестации – зачету.
В случае неудовлетворительной оценки за практическое задание по отдельной теме студент должен выполнить работу над ошибками и дополнительно решить другие примеры из тех же тем, за которые получены неудовлетворительные оценки (за каждый неправильно решенный пример – один дополнительно).
Если контрольная работа не зачтена, то студент должен выполнить работу над ошибками и затем заново написать другой вариант контрольной работы, предложенный преподавателем.
Краткий курс лекций
1. Предмет, метод и задачи курса «Эконометрика».
1.1. Соотношения между экономическими переменными.
Одна из наиболее общих задач в экономических исследованиях состоит в оценивании степени зависимости изучаемой величины Y от одной или нескольких случайных (или неслучайных) величин X, называемых факторами. Зависимость может быть функциональной, статистической, либо отсутствовать вовсе.
Строгая функциональная зависимость между экономическими показателями (наличие всегда выполняющегося равенства Y=f(X)) реализуется редко, так как они подвержены влиянию случайных факторов. При статистической зависимости изменение одной из величин влечет изменение распределения другой (в частности, среднего значения; в этом случае статистическую зависимость называют корреляционной).
Причем, всегда есть несколько величин, которые определяют главные тенденции изменения рассматриваемой величины, и в экономической теории и практике ограничиваются тем или иным кругом таких величин (объясняющих переменных). Однако всегда существует и воздействие большого числа других, менее важных или трудно идентифицируемых факторов, приводящее к отклонению значений объясняемой (зависимой) переменной от конкретной формулы ее связи с объясняющими переменными, сколь бы точной эта формула ни была. Нахождение, оценка и анализ таких связей, идентификация объясняющих переменных, построение формул зависимости и оценка их параметров и составляют предмет корреляционно-регрессионного анализа, при этом корреляционный анализ занимается исследованием взаимозависимости случайных величин, тогда как регрессионный анализ на базе выборочных данных исследует зависимость случайной величины от ряда неслучайных и случайных величин.
Примерами корреляционно, но не функционально, связанных величин являются объемы производства и себестоимость продукции, объемы продаж и прибыль, урожай зерна и количество внесенных удобрений. Действительно, в последнем примере с одинаковых по площади участков земли при равных количествах внесенных удобрений снимают различный урожай, т.е. отсутствует функциональная связь. Это объясняется влиянием случайных факторов (осадки, температура, качество семян и др.). Вместе с тем, как показывает опыт, средний урожай меняется с изменением количества удобрений, т.е. прослеживается корреляционная зависимость.
Регрессионные модели как инструмент анализа и прогнозирования экономических явлений.
Регрессионная модель экономического объекта (или производственного процесса), отражая основные его свойства и абстрагируясь от второстепенных, позволяет судить о его поведении при определенных значениях объясняющих факторов.
К числу основных факторов относят обычно трудовые ресурсы в той или иной мере, а также энергетические, сырьевые, материальные ресурсы, оборудование, здания, сооружения и т.д. Кроме того, в модели должны быть отражены факторы, определяющие состояние внешней среды (экономические, политические, природные и т.п.).
Несмотря на развитие экономики, на протяжении относительно небольших временных периодов и в пределах отдельных экономических подсистем имеет место стабильность в условиях совершения массовых событий. При прогнозировании экономических процессов подразумевается возможность многократного повторения производственной ситуации, быть может, при других значениях существенных и несущественных факторов, однако при относительно стабильном комплексе внешних условий и сохраняющейся тенденции влияния объясняющих факторов на анализируемый экономический показатель.
Таким образом, при анализе и прогнозировании экономических явлений результирующий показатель у является функцией существенных (х1,х2,…,хm) и несущественных (1,2,…,k) факторов
у=f(х1,х2,…,хm,1,2,…,k) (1)
и вычисляется посредством подстановки в (1) значений объясняющих факторов. В силу относительной малости несущественных факторов (в смысле влияния на результат), ими можно пренебречь, при этом рассматриваемый ниже аппарат позволяет оценить возникшую вследствие данного усечения модели погрешность.
Линейные однофакторные регрессионные модели эконометрики.
