Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
эконометрика-раздача / УМК-эконометрика-магистры.doc
Скачиваний:
59
Добавлен:
09.05.2015
Размер:
5.46 Mб
Скачать

5.6. Обобщенный метод наименьших квадратов. Метод Главных Компонент.

При нарушении гомоскедастичности и наличии автокорреляции ошибок рекомендуется традиционный метод наименьших квадратов (метод OLD–OrdinaryLeastSquares) заменятьобобщенным методомGLS(GeneralizedLeastSquares). Он применяется к преобразованным данным и позволяет получать оценки, которые обладают не только свойством несмещенности, но и имеют меньшие выборочные дисперсии.

Суть метода заключается в том, что подбираются коэффициенты Кi, такие, чтоσ2i2·Кi,

где σ2i– дисперсия ошибки при конкретномi–ом значении фактора;

σ2 – постоянная дисперсия ошибки при соблюдении предпосылки о

гомоскедастичности остатков;

Кi – коэффициент пропорциональности, меняющийся с изменением

величины фактора.

Уравнение парной регрессии при этом принимает вид

уi/ =0/ +1хi/ +i.

По отношению к обычной регрессии уравнение с новыми, преобразованными переменными представляют собой взвешенную регрессию, в которой переменныеуихвзяты с весами 1/. Аналогичный подход применяют и для множественной регрессии, уравнение с преобразованными переменными принимает вид

у/ =0/ +1х1/ +2х2/ +…+mхm/ +. (15)

Параметры такой модели зависят от концепции, принятой для коэффициента пропорциональности К. В эконометрических исследованиях довольно часто выдвигается гипотеза, что остатки i пропорциональны значениям фактора. Пусть, например,у– издержки производства,х1– объем продукции,х2– основные производственные фонды,х3– численность работников, тогда уравнениеу=0+1х1+2х2+3х3+является моделью издержек производства с объемными факторами. Предполагая, чтоσ2iпропорциональна квадрату численности работников (т.е. =х3), получим в качестве результативного признака затраты на одного работника (у/х3), а в качестве факторов производительность труда (х1/х3) и фондовооруженность труда (х2/х3). Соответственно трансформированная модель примет вид

у/х3=3+1х1/х3+2х2/х3+,

где вычисленные параметры 3,1,2 численно не совпадают с аналогичными параметрами предыдущей модели. Кроме того, коэффициенты регрессии меняют экономическое содержание: из показателей силы связи, характеризующих среднее изменение издержек производства с изменением абсолютного значения соответствующего фактора на единицу, они фиксируют теперь среднее изменение затрат на работника в зависимости от изменения производительности труда на единицу; и в зависимости от изменения фондовооруженности труда на единицу.

Если же предположить, что в первоначальной модели дисперсия остатков пропорциональна квадрату объема продукции, получаем уравнение регрессии

у/х1=1+2х2/х1+3х3/х1+,

где у/х1– затраты на единицу продукции,х2/х1– фондоемкость продукции,х3/х1– трудоемкость продукции.

Переход к относительным величинам существенно снижает вариацию фактора и соответственно уменьшает дисперсию ошибки.

Метод Главных Компонент (Principal Components Analysis, PCA) – один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретен К. Пирсоном в 1901 г. Он применяется для: (1) наглядного представления данных; (2) обеспечения лаконизма моделей, упрощения счета и интерпретации; (3) сжатия объемов хранимой информации. Метод обеспечивает максимальную информативность и минимальное искажение геометрической структуры исходных данных. Вычисление главных компонент сводится к вычислению собственных векторов и собственных значений ковариационной матрицы исходных данных. Иногда метод главных компонент называют преобразованием Кархунена-Лоэва или преобразованием Хотеллинга. Другие способы уменьшения размерности данных – это метод независимых компонент, многомерное шкалирование, а также многочисленные нелинейные обобщения: метод главных кривых и многообразий, поиск наилучшей проекции, нейросетевые методы «узкого горла», самоорганизующиеся карты Кохонена и др.

Задача анализа главных компонент, имеет, как минимум, четыре базовых версии:

аппроксимировать данные линейными многообразиями меньшей размерности;

найти подпространства меньшей размерности, в ортогональной проекции на которые разброс данных (т.е. среднеквадратичное уклонение от среднего значения) максимален;

найти подпространства меньшей размерности, в ортогональной проекции на которые среднеквадратичное расстояние между точками максимально;

для данной многомерной случайной величины построить такое ортогональное преобразование координат, что в результате корреляции между отдельными координатами обратятся в ноль. Подробнее о методе главных компонент см. Айвазян С. А., Бухштабер В. М., Енюков И. С., Мешалкин Л. Д. Прикладная статистика. Классификация и снижение размерности. – М.: Финансы и статистика, 1989. – 607 с. Россиев А. А.,: Итерационное моделирование неполных данных с помощью многообразий малой размерности, Изд-во СО РАН, 2005.

Соседние файлы в папке эконометрика-раздача