- •Федеральное агентство по образованию
- •Южно-уральский государственный университет
- •Факультет экономики и предпринимательства
- •Кафедра «предпринимательство и менеджмент»
- •Учебно-методический комплекс
- •Оглавление
- •Цель, задачи и содержание дисциплины
- •Календарно-тематический план работы студента
- •Рабочая программа
- •Федеральное агентство по образованию
- •Южно-уральский государственный университет
- •Факультет экономики и предпринимательства
- •Кафедра «предпринимательство и менеджмент»
- •Рабочая программа
- •1. Введение
- •2. Разделы дисциплины, виды и объем занятий
- •3. Требования к практическим видам занятий при освоении дисциплины
- •4. Рекомендуемая литература
- •Требования к практическим видам занятий при освоении дисциплины
- •Методические рекомендации
- •1. Методические рекомендации по изучению теоретического материала.
- •2. Методические рекомендации по решению практических задач.
- •3. Методические рекомендации по выполнению контрольных работ.
- •4. Требования к критериям оценки выполнения практических заданий, контрольных работ.
- •Краткий курс лекций
- •1. Предмет, метод и задачи курса «Эконометрика».
- •1.1. Соотношения между экономическими переменными.
- •2.1. Определения. Линейная регрессионная модель для случая одной факторной переменной.
- •2.3. Свойства оценок мнк.
- •2.4.Регрессия по эмпирическим (выборочным) данным и теоретическая регрессия.
- •Таким образом, получено уравнение регрессии
- •2.5. Экономическая интерпретация параметров линейного уравнения регрессии.
- •2.6. Измерение и интерпретация случайной составляющей.
- •3. Линейная модель множественной регрессии
- •3.1. Обоснование и отбор факторов при построении множественной регрессии.
- •3.2. Линейная регрессионная модель со многими переменными.
- •3.3. Оценка и интерпретация параметров.
- •3.4. Описание связей между макроэкономическими переменными.
- •3.5. Формирование регрессионных моделей на компьютере с помощью ппп Excel
- •3.5.1. Однофакторная регрессия.
- •3.5.2. Многофакторная регрессия.
- •4. Нелинейные модели регрессии и их линеаризация
- •4.1. Мультипликативные модели регрессии и их линеаризация.
- •4.2. Гиперболическая и логарифмическая регрессии. Полиномиальная и кусочно-полиномиальная регрессия.
- •4.3. Экспоненциальная и степенная регрессии.
- •5.1. Доверительные интервалы для коэффициентов: реальные статистические данные
- •5.2. Проверка статистических гипотез о значениях коэффициентов
- •5.3. Проверка значимости параметров линейной регрессии и подбор модели с использованием f-критериев
- •5.4. Проверка значимости и подбор модели с использованием коэффициентов детерминации. Информационные критерии
- •5.6. Обобщенный метод наименьших квадратов. Метод Главных Компонент.
- •5.7.Прогнозирование. Доверительный интервал прогноза.
- •6. Временные ряды.
- •6.1. Характеристики временных рядов. Выявление тренда в динамических рядах экономических показателей.
- •6.3. Статистика Дарбина-Уотсона.
- •7.Задачи экономического анализа, решаемые на основе регрессионных эконометрических моделей
- •7.1. Измерение тесноты связи между результативным и факторными признаками.
- •18. Имеются данные о рынке строящегося жилья в Санкт-Петербурге (по состоянию на декабрь 2006 г.).
- •Вопросы к экзамену(зачету) по дисциплине «Эконометрика».
- •Контрольные задания по дисциплине «Эконометрика».
- •Рекомендуемая литература
5.6. Обобщенный метод наименьших квадратов. Метод Главных Компонент.
При нарушении гомоскедастичности и наличии автокорреляции ошибок рекомендуется традиционный метод наименьших квадратов (метод OLD–OrdinaryLeastSquares) заменятьобобщенным методомGLS(GeneralizedLeastSquares). Он применяется к преобразованным данным и позволяет получать оценки, которые обладают не только свойством несмещенности, но и имеют меньшие выборочные дисперсии.
Суть метода заключается в том, что подбираются коэффициенты Кi, такие, чтоσ2i=σ2·Кi,
где σ2i– дисперсия ошибки при конкретномi–ом значении фактора;
σ2 – постоянная дисперсия ошибки при соблюдении предпосылки о
гомоскедастичности остатков;
Кi – коэффициент пропорциональности, меняющийся с изменением
величины фактора.
Уравнение парной регрессии при этом принимает вид
уi/
=0/
+1хi/
+i.
По отношению к обычной регрессии
уравнение с новыми, преобразованными
переменными представляют собой взвешенную
регрессию, в которой переменныеуихвзяты с весами 1/
.
Аналогичный подход применяют и для
множественной регрессии, уравнение с
преобразованными переменными принимает
вид
у/
=0/
+1х1/
+2х2/
+…+mхm/
+.
(15)
Параметры такой модели зависят от
концепции, принятой для коэффициента
пропорциональности К. В эконометрических
исследованиях довольно часто выдвигается
гипотеза, что остатки i
пропорциональны значениям фактора.
Пусть, например,у– издержки
производства,х1– объем
продукции,х2– основные
производственные фонды,х3–
численность работников, тогда уравнениеу=0+1х1+2х2+3х3+является моделью
издержек производства с объемными
факторами. Предполагая, чтоσ2iпропорциональна квадрату численности
работников (т.е.
=х3), получим в качестве
результативного признака затраты на
одного работника (у/х3), а
в качестве факторов производительность
труда (х1/х3) и
фондовооруженность труда (х2/х3).
Соответственно трансформированная
модель примет вид
у/х3=3+1х1/х3+2х2/х3+,
где вычисленные параметры 3,1,2 численно не совпадают с аналогичными параметрами предыдущей модели. Кроме того, коэффициенты регрессии меняют экономическое содержание: из показателей силы связи, характеризующих среднее изменение издержек производства с изменением абсолютного значения соответствующего фактора на единицу, они фиксируют теперь среднее изменение затрат на работника в зависимости от изменения производительности труда на единицу; и в зависимости от изменения фондовооруженности труда на единицу.
Если же предположить, что в первоначальной модели дисперсия остатков пропорциональна квадрату объема продукции, получаем уравнение регрессии
у/х1=1+2х2/х1+3х3/х1+,
где у/х1– затраты на единицу продукции,х2/х1– фондоемкость продукции,х3/х1– трудоемкость продукции.
Переход к относительным величинам существенно снижает вариацию фактора и соответственно уменьшает дисперсию ошибки.
Метод Главных Компонент (Principal Components Analysis, PCA) – один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретен К. Пирсоном в 1901 г. Он применяется для: (1) наглядного представления данных; (2) обеспечения лаконизма моделей, упрощения счета и интерпретации; (3) сжатия объемов хранимой информации. Метод обеспечивает максимальную информативность и минимальное искажение геометрической структуры исходных данных. Вычисление главных компонент сводится к вычислению собственных векторов и собственных значений ковариационной матрицы исходных данных. Иногда метод главных компонент называют преобразованием Кархунена-Лоэва или преобразованием Хотеллинга. Другие способы уменьшения размерности данных – это метод независимых компонент, многомерное шкалирование, а также многочисленные нелинейные обобщения: метод главных кривых и многообразий, поиск наилучшей проекции, нейросетевые методы «узкого горла», самоорганизующиеся карты Кохонена и др.
Задача анализа главных компонент, имеет, как минимум, четыре базовых версии:
аппроксимировать данные линейными многообразиями меньшей размерности;
найти подпространства меньшей размерности, в ортогональной проекции на которые разброс данных (т.е. среднеквадратичное уклонение от среднего значения) максимален;
найти подпространства меньшей размерности, в ортогональной проекции на которые среднеквадратичное расстояние между точками максимально;
для данной многомерной случайной величины построить такое ортогональное преобразование координат, что в результате корреляции между отдельными координатами обратятся в ноль. Подробнее о методе главных компонент см. Айвазян С. А., Бухштабер В. М., Енюков И. С., Мешалкин Л. Д. Прикладная статистика. Классификация и снижение размерности. – М.: Финансы и статистика, 1989. – 607 с. Россиев А. А.,: Итерационное моделирование неполных данных с помощью многообразий малой размерности, Изд-во СО РАН, 2005.
