- •Гельруд я.Д.
- •Оглавление
- •Контрольная работа по Эконометрике
- •1. Введение в корреляционно-регрессионный анализ.
- •1.1. Соотношения между экономическими переменными.
- •1.2. Линейная связь, корреляция.
- •2.1. Определения. Парная регрессия. Метод наименьших квадратов (мнк).
- •2.2. Свойства оценок мнк.
- •2.3. Показатели качества регрессии.
- •Таким образом, получено уравнение регрессии
- •2.4. Множественная регрессия.
- •2.5. Формирование регрессионных моделей на компьютере с помощью ппп Excel
- •2.5.1. Однофакторная регрессия.
- •2.5.2. Многофакторная регрессия.
- •2.7. Обобщенный метод наименьших квадратов.
- •3. Нелинейные модели регрессии и их линеаризация
- •3.1. Мультипликативные модели регрессии и их линеаризация.
- •3.2. Гиперболическая регрессия. Полиномиальная и кусочно-полиномиальная регрессия.
- •3.3. Экспоненциальная и степенная регрессии.
- •4. Временные ряды.
- •4.1. Характеристики временных рядов. Выявление тренда в динамических рядах экономических показателей.
- •4.3. Статистика Дарбина-Уотсона.
- •Контрольные вопросы по курсу «эконометрика».
- •Контрольные задания по курсу «эконометрика».
2.1. Определения. Парная регрессия. Метод наименьших квадратов (мнк).
Если формула (3) линейна, то речь идет о линейной регрессии. Формула статистической связи двух переменных называется парной регрессией, зависимость от нескольких переменных – множественной регрессией. Например, Кейнсом была предложена линейная модель зависимости частного потребления С от располагаемого дохода Х: С=С0+ С1Х, где С0 >0 – величина автономного потребления (при уровне дохода Х=0), 1>C1>0 – предельная склонность к потреблению (C1 показывает, на сколько увеличится потребление при увеличении дохода на единицу).
В случае парной линейной регрессии имеется только один объясняющий фактор х и линейная регрессионная модель записывается в следующем виде:
у=0+1х+, (4)
где – случайная составляющая с независимыми значениями М=0, D= 2.
Оценка параметров регрессии 0 и 1 производится по наблюденным значениям зависимой и объясняющей переменным (xi,yi), i=1,2,…,n, где n – число пар наблюдений (объем выборки). Рассматриваются n уравнений уi=0+1хi+i, где уклонения i является следствием реализации случайной составляющей, и выбирают такие значения 0 и 1, которые минимизируют сумму квадратов этих уклонений, т.е. ищется минимум
Q=ii2= i(уi – 0 – 1хi)2 (5)
по отношению к параметрам 0 и 1. Заметим, что указанный метод наименьших квадратов (МНК) может быть применен к любой кривой регрессии f(x). “Наилучшая” по МНК прямая линия всегда существует, но даже наилучшая не всегда является достаточно хорошей. Если в действительности зависимость у= f(x) является, например, квадратичной, то ее не сможет адекватно описать никакая линейная функция, хотя среди всех линейных функций обязательно найдется “наилучшая”.
Для
отыскания минимума берутся частные
производные Q
по искомым параметрам (в данном случае
по 0
и 1)
и приравниваются к нулю. После выполнения
элементарных преобразований получают
так называемую систему
нормальных уравнений,
из которой и находятся искомые параметры.
Для парной линейной регрессии получаем
1=(
–
)/(
– (
)2),
(6)
0=
–1
=((
)
–
)/(
– (
)2),
где
=xiyi/n,
=xi/n,
=yi/n,
=хi2/n.
Коэффициент 1 называется коэффициентом регрессии и обозначается yx. Из (2) и (6) следует, что
yx = ryx y /х. (7)
Если выборка имеет достаточно большой объем и хорошо представляет генеральную совокупность (репрезентативна), то заключение о тесноте линейной зависимости между признаками, полученными по данным выборки, в известной степени может быть распространено и на генеральную совокупность, т.е. можно выдвинуть гипотезу об имеющейся линейной связи во всей генеральной совокупности вида у=0+1х.
