- •Министерство науки и образования российской федерации
- •Тема 1. Предмет, метод и задачи ЭконометрикИ 6
- •Тема 6. Временные ряды 112
- •Тема 7. Задачи экономического анализа, решаемые на основе эконометрических моделей 135
- •Тема 8. Системы эконометрических уравнений 167
- •Введение
- •Тема 1. Предмет, метод и задачи ЭконометрикИ.
- •1.1. Основные понятия
- •1.2. Соотношения между экономическими переменными.
- •Контрольные вопросы
- •Рекомендуемые темы рефератов
- •Литература для самостоятельной работы
- •Интернет-ресурсы:
- •2.3. Свойства оценок мнк.
- •2.4.Регрессия по эмпирическим (выборочным) данным и теоретическая регрессия.
- •Таким образом, получено уравнение регрессии
- •2.5. Экономическая интерпретация параметров линейного уравнения регрессии.
- •2.6. Измерение и интерпретация случайной составляющей.
- •Примеры
- •Контрольные вопросы
- •Задания и задачи
- •Литература для самостоятельной работы
- •Тема 3. Линейная модель множественной регрессии
- •3.1. Отбор факторов при построении множественной регрессии.
- •3.2. Линейная регрессионная модель со многими переменными.
- •3.3. Оценка и интерпретация параметров.
- •3.4. Описание связей между макроэкономическими переменными.
- •3.5. Формирование регрессионных моделей на компьютере с помощью ппп Excel
- •3.5.1. Однофакторная регрессия.
- •3.5.2. Многофакторная регрессия.
- •Примеры
- •Контрольные вопросы
- •Задания и задачи
- •Литература для самостоятельной работы
- •Тема 4. Нелинейные модели регрессии и их линеаризация
- •4.1. Общие понятия
- •4.2. Мультипликативные модели регрессии и их линеаризация.
- •4.3. Гиперболическая и логарифмическая регрессии. Полиномиальная и кусочно-полиномиальная регрессия.
- •4.4. Экспоненциальная и степенная однофакторная регрессии.
- •Контрольные вопросы
- •Задания и задачи
- •Литература для самостоятельной работы
- •5.1. Доверительные интервалы для коэффициентов: реальные статистические данные
- •5.2. Проверка статистических гипотез о значениях коэффициентов
- •5.3. Проверка значимости параметров линейной регрессии и подбор модели с использованием f-критериев
- •5.4. Проверка значимости и подбор модели с использованием коэффициентов детерминации. Информационные критерии
- •5.6. Обобщенный метод наименьших квадратов.Метод Главных Компонент.
- •5.7.Прогнозирование.Доверительный интервал прогноза.
- •Контрольные вопросы
- •Задания и задачи
- •3. Имеются данные о рынке строящегося жилья в Санкт-Петербурге (по состоянию на декабрь 2006 г.).
- •Литература для самостоятельной работы
- •6. Временные ряды.
- •6.1. Характеристики временных рядов. Выявление тренда в динамических рядах экономических показателей.
- •6.3. Статистика Дарбина-Уотсона.
- •6.4. Динамические эконометрические модели
- •6.5. Интерпретация параметров моделей с распределенным лагом
- •Пример.
- •Задания и задачи
- •Литература для самостоятельной работы
- •7.Задачи экономического анализа, решаемые на основе регрессионных эконометрических моделей
- •7.1. Измерение тесноты связи между результативным и факторными признаками.
- •Контрольные вопросы
- •Задания и задачи
- •Литература для самостоятельной работы
- •8. Системы эконометрических уравнений.
- •8.1. Структура систем эконометрических уравнений
- •8.2. Проблема идентификации
- •Литература для самостоятельной работы
- •Методические рекомендации
- •1. Методические рекомендации по изучению теоретического материала.
- •2. Методические рекомендации по решению практических задач.
- •3. Методические рекомендации по выполнению контрольных работ.
- •4. Требования к критериям оценки выполнения практических заданий, контрольных работ.
- •Вопросы для подготовки к зачету
- •Контрольные задания
- •Глоссарий
- •Список рекомендуемой литературы
- •Предметный указатель
- •Приложения
6.3. Статистика Дарбина-Уотсона.
При моделировании временных рядов нередко встречается ситуация, когда остатки t содержат тенденцию (возрастают или убывают со временем) или циклические колебания. В этом случае имеет место автокорреляция остатков (см. 2.6.). Существует два наиболее распространенных способа определения автокорреляции остатков. Первый метод – построение графика зависимости остатков от времени и визуальное определение наличия или отсутствия автокорреляции. Второй метод – использование критерия Дарбина – Уотсона и расчет величины
(6.3)
Между критерием Дарбина – Уотсона и коэффициентом автокорреляции остатков действует соотношение
d2(1 – r).
Таким образом, если в остатках существует полная положительная автокорреляция (r=1), то d=0. Если в остатках полная отрицательная корреляция (r= –1), то d=4. Если автокорреляция остатков отсутствует (r=0), то d=2.
Алгоритм выявления автокорреляции остатков на основе критерия Дарбина – Уотсона следующий. Задается уровень значимости . По таблицам значений критерия Дарбина – Уотсона (приложение 3) определяются для числа наблюдений n и числа независимых переменных (факторов) k критические значения dl и du. Получаем пять интервалов для значения d.
если 0 ddl, то имеется положительная автокорреляция остатков;
если dlddu, то это зона неопределенности (на практике предполагаем положительную автокорреляцию остатков);
если dud 4 – du, то автокорреляция остатков отсутствует;
если 4 – dud 4 – dl , то это зона неопределенности (на практике предполагаем отрицательную автокорреляцию остатков);
если 4 – dld4, то имеется отрицательная автокорреляция остатков.
Пример6.3. Проверка гипотезы о наличии автокорреляции в остатках для модели зависимости расходов на конечное потребление от совокупного дохода. Исходные данные и результаты промежуточных расчетов для критерия Дарбина-Уотсона приведены в табл.6.5.
Таблица 6.5
|
Год |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
|
Расходы, у |
7 |
8 |
8 |
10 |
11 |
12 |
14 |
16 |
|
доход, х |
10 |
12 |
11 |
12 |
14 |
15 |
17 |
20 |
у= –2.05+0,92х+t.
|
Год |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
|
ŷ |
7,15 |
8,99 |
8,07 |
8,99 |
10,83 |
11,75 |
13,59 |
16,35 |
|
t |
–0,15 |
–0,99 |
–0,07 |
1,01 |
0,17 |
0,25 |
0,41 |
–0,35 |
|
t – t-1 |
- |
–0,84 |
0,92 |
1,08 |
–0,84 |
0,08 |
0,16 |
–0,76 |
|
∑(t)2=2,4095 |
,0225 |
,9801 |
,0049 |
1,020 |
,0289 |
,0625 |
,1681 |
,1225 |
|
∑(t – t-1)2=4,0336 |
- |
,7056 |
0,846 |
1,166 |
,7056 |
,0064 |
,0256 |
,5776 |
Имеем d=4,0336/2,4095=1,674.
Пусть =0,05, по таблицам (приложение 3) для n=8 и k=1 (однофакторная модель) находим критические значения dl =0,76, du =1,33. Так как в нашем случае 1,33 1,674 4 – 1,39=2,61, то автокорреляция остатков отсутствует.
6.4. Динамические эконометрические модели
Эконометрическая модель называется динамической, если в данный момент времени t она учитывает значения входящих в нее переменных, относящиеся как к текущему, так и к предыдущим моментам времени.
При исследовании экономических процессов нередко приходится моделировать ситуации, когда значение результативного признака в текущий момент времени t формируется под воздействием ряда факторов, действовавших в прошлые моменты времени t – 1, t – 2, ..., t – l. Например, на выручку от реализации или прибыль компании текущего периода могут оказывать влияние расходы на рекламу или проведение маркетинговых исследований, сделанные компанией в предшествующие моменты времени. Величину l, характеризующую запаздывание в воздействии фактора на результат, называют в эконометрике лагом, а временные ряды самих факторных переменных, сдвинутые на один или более моментов времени, – лаговыми переменными. Эконометрическое моделирование охарактеризованных выше процессов осуществляется с применением моделей, содержащих не только текущие, но и лаговые значения факторных переменных. Эти модели называются моделями с распределенным лагом. Модель вида
yt=a+b0xt+ b1xt-1+ b2xt-2+ εt (6.4)
является примером модели с распределенным лагом.
График зависимости значений автокорреляционной функции от величины лага называется коррелограммой.
Решение ряда задач макроэкономики требует ответа на вопрос: какое воздействие окажут значения управляемых переменных текущего периода на будущие значения экономических показателей. Например, как повлияют инвестиции в промышленность на валовую добавленную стоимость этой отрасли экономики будущих периодов? Т. е. исследуются ситуации, когда на величину зависимой переменной текущего периода могут оказывать влияние ее значения в прошлые моменты или периоды времени. Эти процессы обычно описывают с помощью моделей регрессии, содержащих в качестве факторов лаговые значения зависимой переменной, которые называются моделями авторегрессии. Модель вида
yt=a+b0xt+ c1yt-1+εt (6.5)
относится к моделям авторегрессии.
Таким образом, выделяют два основных типа динамических эконометрических моделей:
– модели авторегрессии;
– модели с распределенным лагом, в которых значения факторной переменной за прошлые периоды времени (лаговые переменные) непосредственно включены в модель.
Построение моделей с распределенным лагом и моделей авторегрессии имеет свою специфику. Во-первых, оценка параметров моделей авторегрессии, а в большинстве случаев и моделей с распределенным лагом не может быть произведена с помощью обычного МНК ввиду нарушения его предпосылок и требует специальных статистических методов. Во-вторых, исследователям приходится решать проблемы выбора оптимальной величины лага и определения его структуры. Наконец, в-третьих, между моделями с распределенным лагом и моделями авторегрессии существует определенная взаимосвязь, и в некоторых случаях необходимо осуществлять переход от одного типа моделей к другому.
