- •Министерство науки и образования российской федерации
- •Тема 1. Предмет, метод и задачи ЭконометрикИ 6
- •Тема 6. Временные ряды 112
- •Тема 7. Задачи экономического анализа, решаемые на основе эконометрических моделей 135
- •Тема 8. Системы эконометрических уравнений 167
- •Введение
- •Тема 1. Предмет, метод и задачи ЭконометрикИ.
- •1.1. Основные понятия
- •1.2. Соотношения между экономическими переменными.
- •Контрольные вопросы
- •Рекомендуемые темы рефератов
- •Литература для самостоятельной работы
- •Интернет-ресурсы:
- •2.3. Свойства оценок мнк.
- •2.4.Регрессия по эмпирическим (выборочным) данным и теоретическая регрессия.
- •Таким образом, получено уравнение регрессии
- •2.5. Экономическая интерпретация параметров линейного уравнения регрессии.
- •2.6. Измерение и интерпретация случайной составляющей.
- •Примеры
- •Контрольные вопросы
- •Задания и задачи
- •Литература для самостоятельной работы
- •Тема 3. Линейная модель множественной регрессии
- •3.1. Отбор факторов при построении множественной регрессии.
- •3.2. Линейная регрессионная модель со многими переменными.
- •3.3. Оценка и интерпретация параметров.
- •3.4. Описание связей между макроэкономическими переменными.
- •3.5. Формирование регрессионных моделей на компьютере с помощью ппп Excel
- •3.5.1. Однофакторная регрессия.
- •3.5.2. Многофакторная регрессия.
- •Примеры
- •Контрольные вопросы
- •Задания и задачи
- •Литература для самостоятельной работы
- •Тема 4. Нелинейные модели регрессии и их линеаризация
- •4.1. Общие понятия
- •4.2. Мультипликативные модели регрессии и их линеаризация.
- •4.3. Гиперболическая и логарифмическая регрессии. Полиномиальная и кусочно-полиномиальная регрессия.
- •4.4. Экспоненциальная и степенная однофакторная регрессии.
- •Контрольные вопросы
- •Задания и задачи
- •Литература для самостоятельной работы
- •5.1. Доверительные интервалы для коэффициентов: реальные статистические данные
- •5.2. Проверка статистических гипотез о значениях коэффициентов
- •5.3. Проверка значимости параметров линейной регрессии и подбор модели с использованием f-критериев
- •5.4. Проверка значимости и подбор модели с использованием коэффициентов детерминации. Информационные критерии
- •5.6. Обобщенный метод наименьших квадратов.Метод Главных Компонент.
- •5.7.Прогнозирование.Доверительный интервал прогноза.
- •Контрольные вопросы
- •Задания и задачи
- •3. Имеются данные о рынке строящегося жилья в Санкт-Петербурге (по состоянию на декабрь 2006 г.).
- •Литература для самостоятельной работы
- •6. Временные ряды.
- •6.1. Характеристики временных рядов. Выявление тренда в динамических рядах экономических показателей.
- •6.3. Статистика Дарбина-Уотсона.
- •6.4. Динамические эконометрические модели
- •6.5. Интерпретация параметров моделей с распределенным лагом
- •Пример.
- •Задания и задачи
- •Литература для самостоятельной работы
- •7.Задачи экономического анализа, решаемые на основе регрессионных эконометрических моделей
- •7.1. Измерение тесноты связи между результативным и факторными признаками.
- •Контрольные вопросы
- •Задания и задачи
- •Литература для самостоятельной работы
- •8. Системы эконометрических уравнений.
- •8.1. Структура систем эконометрических уравнений
- •8.2. Проблема идентификации
- •Литература для самостоятельной работы
- •Методические рекомендации
- •1. Методические рекомендации по изучению теоретического материала.
- •2. Методические рекомендации по решению практических задач.
- •3. Методические рекомендации по выполнению контрольных работ.
- •4. Требования к критериям оценки выполнения практических заданий, контрольных работ.
- •Вопросы для подготовки к зачету
- •Контрольные задания
- •Глоссарий
- •Список рекомендуемой литературы
- •Предметный указатель
- •Приложения
4.3. Гиперболическая и логарифмическая регрессии. Полиномиальная и кусочно-полиномиальная регрессия.
Гиперболическая модель линеаризуется непосредственной заменой переменной y=1/y:
![]()
Эти функции используются при построении кривых Энгеля, которые описывают зависимость спроса на определенный вид товаров или услуг от уровня доходов потребителей или от цены товара.
Для определения однофакторнойкриволинейной функции регрессии по расположению точек на диаграмме рассеяния делают заключение о примерном виде этой функции, при этом необходимо учитывать особенности конкретной экономической задачи, в рамках которой анализируется взаимосвязь признаков.
Гиперболическая однофакторная регрессия имеет вид
у=b+а/х. (4.5)
Она может быть использована для характеристики связи удельных расходов сырья, материалов, топлива с объемом выпускаемой продукции, времени обращения товаров от величины товарооборота. Классическим ее примером является кривая Филлипса, характеризующая нелинейное соотношение между нормой безработицы х и процентом прироста заработной платы у. Английский экономист А.В.Филлипс, анализируя данные более чем за 100-летний период, в конце 50-х годов 20 века, установил обратную зависимость прироста заработной платы от уровня безработицы.
Выполнив замену 1/х = z, получаем линейную регрессию у=b+аz, параметры которой на компьютере(в Excel) можно вычислить с помощью функции ЛИНЕЙН.
Модели
вида![]()
называются полулогарифмическими однофакторными моделями. Эти модели также относятся к нелинейным моделям относительно включенных в анализ объясняющих переменных, но линейным по параметрам.
Такие модели обычно используются в тех случаях, когда необходимо определять темп роста или прироста каких-либо экономических показателей. Например, при анализе банковского вклада по первоначальному вкладу и процентной ставке, при исследовании зависимости прироста объема выпуска от относительного (процентного) увеличения затрат ресурса, бюджетного дефицита от темпа роста ВНП, темпа роста инфляции от объема денежной массы и т.д.
Зависимость![]()
где Y0 – начальная величина переменной Y (например, первоначальный вклад в банке); r – сложный темп прироста величины Y (процентная ставка); Yt– значение величины Y в момент времени t (вклад в банке в момент времени t). Эта модель легко сводится к полулогарифмической первого вида, параметры которой легко оцениваются с помощью МНК.
Полиномиальная регрессия имеет вид
у=0+1х +2х2 +…+mхm. (4.6)
Если для разных интервалов значений фактора х применяется полиномиальная регрессия с разными степенями m, то имеет место кусочно-полиномиальная регрессия. Неизвестные параметры уравнения криволинейной регрессии также находятся методом наименьших квадратов.
Например, глядя на рис.2.1 (см. пример 2.2), можно предположить, что имеет место параболическаярегрессия второго порядка, т.е. следует искать уравнение регрессии вида
у
х=
0+1х
+2х2
,
где 0, 1, 2 – неизвестные коэффициенты.
Пользуясь методом наименьших квадратов, получаем систему линейных уравнений относительно неизвестных параметров:
х



42+х31+х20=ух2,
х


32+х21+х0
=ух,
(4.7)
х

22+х1+0=
у.
Пример4.1. По данным корреляционной таблицы 2.2 построить параболическую функцию регрессии.
Подставляя данные в (4.7), получаем систему:
2860002+111601+4600=8100,
111602+4601+20.40=354,
4602+20.41+0=17.4.
Решив эту систему, найдем 2=0.055, 1= – 2.26, 0=38.2.
Искомое параболическое уравнение регрессии принимает вид:
у
х
=0.055х2
– 2.26х+38.2
(Пунктирная линия на рис. 2.1).
Легко убедиться, что условные средние, вычисленные по данному уравнению, незначительно отличаются от условных средних корреляционной таблицы.
у
10
=0.055102
– 2.2610+38.2=21.1,
у
20
=0.055202
– 2.2620+38.2=15,
у
30
=0.055302
– 2.2630+38.2=19.9.
Найденное уравнение хорошо согласуется с данными наблюдений.
