
- •Министерство науки и образования российской федерации
- •Тема 1. Предмет, метод и задачи ЭконометрикИ 6
- •Тема 2. Линейные однофакторные регрессионные
- •Тема 3. Линейная модель множественной
- •Тема 4. Нелинейные модели регрессии и их
- •Тема 5. Оценка качества эконометрических
- •Тема 6. Временные ряды 112
- •Тема 7. Задачи экономического анализа, решаемые на основе эконометрических моделей 135
- •Тема 8. Системы эконометрических уравнений 167
- •Введение
- •Тема 1. Предмет, метод и задачи ЭконометрикИ.
- •1.1. Основные понятия
- •1.2. Соотношения между экономическими переменными.
- •Контрольные вопросы
- •Рекомендуемые темы рефератов
- •Литература для самостоятельной работы
- •Интернет-ресурсы:
- •2.3. Свойства оценок мнк.
- •2.4.Регрессия по эмпирическим (выборочным) данным и теоретическая регрессия.
- •Таким образом, получено уравнение регрессии
- •2.5. Экономическая интерпретация параметров линейного уравнения регрессии.
- •2.6. Измерение и интерпретация случайной составляющей.
- •Примеры
- •Контрольные вопросы
- •Задания и задачи
- •Литература для самостоятельной работы
- •Тема 3. Линейная модель множественной регрессии
- •3.1. Отбор факторов при построении множественной регрессии.
- •3.2. Линейная регрессионная модель со многими переменными.
- •3.3. Оценка и интерпретация параметров.
- •3.4. Описание связей между макроэкономическими переменными.
- •3.5. Формирование регрессионных моделей на компьютере с помощью ппп Excel
- •3.5.1. Однофакторная регрессия.
- •3.5.2. Многофакторная регрессия.
- •Примеры
- •Контрольные вопросы
- •Задания и задачи
- •Литература для самостоятельной работы
- •Тема 4. Нелинейные модели регрессии и их линеаризация
- •4.1. Общие понятия
- •4.2. Мультипликативные модели регрессии и их линеаризация.
- •4.3. Гиперболическая и логарифмическая регрессии. Полиномиальная и кусочно-полиномиальная регрессия.
- •4.4. Экспоненциальная и степенная однофакторная регрессии.
- •Контрольные вопросы
- •Задания и задачи
- •Литература для самостоятельной работы
- •5.1. Доверительные интервалы для коэффициентов: реальные статистические данные
- •5.2. Проверка статистических гипотез о значениях коэффициентов
- •5.3. Проверка значимости параметров линейной регрессии и подбор модели с использованием f-критериев
- •5.4. Проверка значимости и подбор модели с использованием коэффициентов детерминации. Информационные критерии
- •5.6. Обобщенный метод наименьших квадратов. Метод Главных Компонент.
- •5.7.Прогнозирование. Доверительный интервал прогноза.
- •Контрольные вопросы
- •Задания и задачи
- •3. Имеются данные о рынке строящегося жилья в Санкт-Петербурге (по состоянию на декабрь 2006 г.).
- •Литература для самостоятельной работы
- •6. Временные ряды.
- •6.1. Характеристики временных рядов. Выявление тренда в динамических рядах экономических показателей.
- •6.3. Статистика Дарбина-Уотсона.
- •6.4. Динамические эконометрические модели
- •6.5. Интерпретация параметров моделей с распределенным лагом
- •Пример.
- •Задания и задачи
- •Литература для самостоятельной работы
- •7.Задачи экономического анализа, решаемые на основе регрессионных эконометрических моделей
- •7.1. Измерение тесноты связи между результативным и факторными признаками.
- •Контрольные вопросы
- •Задания и задачи
- •Литература для самостоятельной работы
- •8. Системы эконометрических уравнений.
- •8.1. Структура систем эконометрических уравнений
- •8.2. Проблема идентификации
- •Литература для самостоятельной работы
- •Методические рекомендации
- •1. Методические рекомендации по изучению теоретического материала.
- •2. Методические рекомендации по решению практических задач.
- •3. Методические рекомендации по выполнению контрольных работ.
- •4. Требования к критериям оценки выполнения практических заданий, контрольных работ.
- •Вопросы для подготовки к зачету
- •Контрольные задания
- •Глоссарий
- •Список рекомендуемой литературы
- •Предметный указатель
- •Приложения
4.4. Экспоненциальная и степенная однофакторная регрессии.
Экспоненциальная модель линеаризуется аналогично (4.1):
Переходя
к новым переменным
получаем
линейную регрессионную модель:
Экспоненциальная однофакторная регрессия имеет вид
ŷ = еaх + b (или ŷ= baх); (4.8)
степенная однофакторная регрессия имеет вид
ŷ = bха; (4.9)
Для нахождения коэффициентов а и b предварительно проводят процедуру линеаризации выражений (4.8) и (4.9):
lnŷ= lnb+xlnа, (4.10)
lnŷ= lnb+аlnx, (4.11)
а затем уже строят линейную регрессию между lnŷ и х для экспоненциальной регрессии, и между lnŷ и lnх для степенной регрессии.
Наибольшее распространение степенной функции в эконометрике связано с тем, что параметр а имеет четкое экономическое истолкование, – он является коэффициентом эластичности. Это значит, что коэффициент b показывает, на сколько % в среднем изменится результат, если фактор изменится на 1%.
Формирование нелинейных однофакторных регрессионных моделей на компьютере с помощью ППП Excel
Для вычисления параметров экспоненциальной регрессии (4.8) на компьютере (в Excel) используется встроенная статистическая функция ЛГРФПРИБЛ. Порядок вычисления аналогичен применению функции ЛИНЕЙН.
Для вычисления параметров степенной регрессии после преобразования исходных данных в соответствие с (4.11), можно воспользоваться функцией ЛИНЕЙН.
Для получения графиков однофакторных регрессий можно применить Мастер диаграмм, строя предварительно точечный график исходных данных (диаграмму рассеяния), а затем использовать режим Добавить линию тренда (для этого установите курсор на любую точку точечной диаграммы и щелкните правой кнопкой мышки), причем в этом режиме Excel предоставляет возможность выбора шести функций – линейной, логарифмической, полиномиальной, степенной, экспоненциальной и скользящей средней. После выбора функции в режиме Параметры задайте флажок Показывать уравнение на диаграмме и Поместить на диаграмму величину достоверности аппроксимации(R^2).
Практический блок
Пример
Задача 1. По некоторым территориям районов края известны значения среднего суточного душевого дохода в у.е. (фактор X) и процент от общего дохода, расходуемого на покупку продовольственных товаров (фактор Y) (табл. 4.1).
Требуется для характеристики зависимости У от X рассчитать параметры линейной, степенной, показательной функции и выбрать оптимальную модель (провести оценку моделей через среднюю ошибку аппроксимации (А) и F-критерий Фишера.
Таблица 4.1
Район |
у |
х |
|
|
|
|
Пожарский (1) |
68,8 |
45,1 |
61,277 |
7,5231 |
11,4989 |
56,5970 |
Кавалеровский (2) |
61,2 |
59,0 |
56,4689 |
4,7311 |
2,00817 |
22,3833 |
Дальнегорский (3) |
59,9 |
57,2 |
57,0915 |
2,8085 |
0,63123 |
7,88767 |
Хасанский (4) |
56,7 |
61,8 |
55,5004 |
1,1996 |
5,69109 |
1,43904 |
Лесозаводский (5) |
55,0 |
58,8 |
56,5381 |
1,5381 |
1,81683 |
2,36575 |
Хорольский (6) |
54,3 |
47,2 |
60,5505 |
6,2505 |
7,09956 |
39,0687 |
Анучинский (7) |
49,3 |
55,2 |
57,7833 |
8,4833 |
0,01055 |
71,9664 |
итого |
405,2 |
|
|
32,534 |
28,7563 |
201,708 |
среднее |
57,886 |
|
|
4,6477 |
|
|
РЕШЕНИЕ.
1а. Для расчета параметров а и b линейной регрессии у=аx+ b решаем систему нормальных уравнений относительно а и b (или используем EXCEL).
Получаем уравнение регрессии: у = 76,88 – 0,35x.
С увеличением среднедневной заработной платы на 1 руб. доля расходов на покупку продовольственных товаров снижается в среднем на 0,35 %-ных пункта.
Рассчитаем линейный коэффициент парной корреляции: r= -0,35326.
Связь умеренная, обратная.
Определим коэффициент детерминации:
R2 = 0,1248.
Вариация
результата на 12,5% объясняется вариацией
фактора х.
Подставляя в уравнение регрессии
фактические значения х,
определим теоретические (расчетные)
значения
(см.
табл. 4.1).
Найдем величину средней ошибки аппроксимации А:
(4,647744/57,88571)100%=0,080292.
В среднем расчетные значения отклоняются от фактических на 8,03%.
Рассчитаем F-критерий:
Fтабл = 6,6 > Fфакт, при γ = 0,05.
Полученное значение указывает на необходимость принять гипотезу Н0 о случайной природе выявленной зависимости и статистической незначимости параметров уравнения и показателя тесноты связи.
1б. Построению степенной модели у= bxа предшествует процедура линеаризации переменных. Линеаризация производится путем логарифмирования обеих частей уравнения:
lgy = lg b + a lgх , или Y = С + аХ,
где Y = lg(y), X = lg(x), C = lg(b).
Для расчетов используем формулы для линейной регрессии (или используем EXCEL).
Получим уравнение: у = 190,03х-0,2984 . R2 =0,1157.
Характеристики степенной модели указывают, что она несколько хуже линейной функции описывает взаимосвязь.
1в. Построению уравнения показательной кривой у=bах предшествует процедура линеаризации переменных при логарифмировании обеих частей уравнения:
lgy = lg b + хlgа , или Y = С + хlgа, и опять же можно использовать формулы для линейной регрессии(или EXCEL).
Получим уравнение: у = 77,24е-0,0053х . R2 =0,1026.
Показательная функция еще хуже, чем степенная, описывает изучаемую зависимость.
1г. Уравнение равносторонней гиперболы у=а/x+ b линеаризуется при замене: x = 1/z .
Тогда у=аz+b. Для расчетов используем формулы для линейной регрессии (или используем EXCEL).
Получено уравнение: у = 38,435 + 1054.7/x. R2 =0.1539.
По уравнению равносторонней гиперболы получена наибольшая оценка тесноты связи (по сравнению с линейной, степенной и показательной регрессиями). A остается на допустимом уровне: 8,1%.
Следовательно, принимается гипотеза Н0 о статистически незначимых параметрах этого уравнения. Этот результат можно объяснить сравнительно невысокой теснотой выявленной зависимости и небольшим числом наблюдений.