
- •Курс лекций
- •Рецензия
- •Рецензия
- •Раздел 2 посвящен наиболее перспективным направлениям и разработкам в получении электрической энергии другими методами.
- •Содержание
- •Введение
- •Исторические условия возникновения и развития энергетической техники
- •Энергетические ресурсы и топливно-энергетический баланс.
- •Раздел 1. Тепловые электрические станции
- •Тема 1.1. Типы электрических станций
- •1.1.1. Классификация электрических станций
- •Контрольные вопросы.
- •1.1.2. Основные элементы паровых электростанций
- •1.1.3. Суточные графики потребления энергии
- •0 4 8 12 16 20 24 Часы суток
- •Тема 1.2. Технологическая схема тэс
- •1.2.1. Тепловая схема тэс
- •1.2.2. Тепловые нагрузки тэц
- •Контрольные вопросы.
- •1.2.3. Отопление и горячее водоснабжение (гвс)
- •1.2.4. Системы теплоснабжения
- •1.2.5. Подпитка тепловой сети
- •1.2.6. Основное и вспомогательное оборудование теплофикационных установок
- •Контрольные вопросы.
- •1.2.6. Топливный тракт электростанции
- •1.2.7. Сжигание жидкого топлива на электростанции
- •1.2.8. Сжигание газа на электростанции
- •Контрольные вопросы.
- •1.2.9. Газовоздушный тракт
- •1.2.10. Тракт шлакозолоудаления
- •Контрольные вопросы.
- •Тема 1.3. Органическое топливо
- •1.3.1. Виды органического топлива
- •1.3.2. Элементарный состав топлива
- •Контрольные вопросы.
- •1.3.3. Характеристики топлива.
- •1.3.4. Выход летучих и кокса, твёрдость топлива и коэффициент размолоспособности
- •1.3.5. Свойства топлива
- •Контрольные вопросы.
- •Тема 1.4. Элементы теории термодинамики
- •1.4.1. Общие определения в технической термодинамике и теплопередаче
- •1.4.2. Основные термодинамические параметры рабочего тела
- •1.4.3. Первый закон термодинамики
- •Контрольные вопросы.
- •1.4.4. Термодинамический процесс
- •1.4.5. Энтальпия
- •1.4.6. Основные термодинамические процессы в газах
- •1.4.7. Политропный процесс
- •1.4.8. Изохорный процесс
- •1.4.9. Изобарный процесс
- •1.4.10. Изотермический процесс
- •Контрольные вопросы.
- •1.4.12. Круговые процессы или циклы
- •1.4.13. Второй закон термодинамики
- •1.4.14. Цикл Карно
- •Контрольные вопросы.
- •1.4.15. Энтропия как параметр термодинамической системы.
- •1.4.16. Регенеративный цикл
- •1.4.17. Термодинамические процессы водяного пара
- •2. Удельную теплоту q1,2, подведённую к рабочему телу или отведённую от него находят по формулам:
- •4. При решении задач по h,s-диаграмме состояние рабочего тела определяют как точку пересечения любых двух линий и находят необходимые параметры пара.
- •1.4.18. Водяной пар
- •Контрольные вопросы.
- •1. Холодная вода при температуре 00с ― точки ɑ1, ɑ2, ɑ3.
- •1.4.20. Основные параметры воды и водяного пара
- •Контрольные вопросы.
- •Тема 1.5. Основное тепловое оборудование тэс
- •1.5.1. Общие сведения о паровых котлах
- •1.5.2. Устройство парового котла
- •Контрольные вопросы.
- •1.5.3. Основные параметры и обозначения паровых котлов
- •1.5.4. Поверхности нагрева паровых котлов
- •1.5.4.1. Экономайзеры
- •1.5.4.2. Испарительные поверхности нагрева
- •1.5.4.3. Пароперегреватели
- •1.5.4.4. Воздухоподогреватели
- •Контрольные вопросы.
- •1.5.5. Паровые турбины
- •1.5.6. Основные узлы и конструкция паровой турбины
- •1.5.7. Принципиальная схема конденсационной установки, устройство конденсатора
- •1.5.8. Воздухоотсасывающие устройства
- •1.5.9 Питательные и циркуляционные насосы
- •Контрольные вопросы.
- •Тема 1.6. Теплоэлектроцентрали (тэц)
- •1.6.1. Общие положения.
- •1.6.2. Регулирование тепловой нагрузки
- •1.6.3. Покрытие основной и пиковой отопительной нагрузок
- •1.6.3. Схемы включения сетевых подогревателей
- •1.6.4. Основное и вспомогательное оборудование теплофикационных установок
- •Контрольные вопросы.
- •Тема 1.7. Компоновка главного корпуса и генеральный план тэс
- •1.7.1. Основные требования, предъявляемые к компоновке тепловых электрических станций
- •1.7.2. Компоновка главного корпуса электростанции. Общие положения.
- •1.7.3. Типы компоновок главного корпуса
- •I. Степень закрытия основных агрегатов (турбин и котлов). По этому признаку компоновки главного корпуса разделяются на:
- •1. Закрытые компоновки, при которых турбоагрегаты находятся внутри соответствующих помещений. Этот тип является основным.
- •II. Взаимное расположение помещений для турбогенераторов и парогенераторов. Этот признак характеризует в основном компоновки закрытого типа. По этому признаку различают следующие варианты:
- •2. Турбоагрегаты и парогенераторы размещаются в двух отдельных параллельных зданиях, находящихся на небольшом расстоянии друг от друга и соединенных переходными
- •Контрольные вопросы.
- •1.7.3. Строительная компоновка главного корпуса тэс
- •1.7.4. Компоновка помещения парогенераторов
- •1.7.5. Компоновка машинного зала и деаэраторного отделения
- •1.7.6. Генеральный план электростанции
- •Контрольные вопросы.
- •Тема 1.8. Газотурбинные, парогазовые и атомные электрические станции
- •1.8.1. Газотурбинные электростанции
- •1. 8.2. Область применения гту
- •1.8.3. Парогазовые установки электростанции
- •1.8.2. Атомные электростанции. Общие сведения
- •2 Замедлитель 39Np нептуний
- •239Pu плутоний 235u Медленные нейтроны
- •1.8.3. Принципиальные тепловые схемы аэс
- •1.8.4. Сооружения, системы хранения и транспортировки топлива на аэс
- •Раздел 2. Альтернативные источники получения электрической энергии
- •Тема 2.1. Нетрадиционные способы получения электрической энергии
- •2.1.1. Электростанции, использующие нетрадиционные виды энергии
- •2.1.2. Гидроэлектростанции.
- •Тема 2.2. Энергетическое производство и окружающая среда
- •2.2.1. Экология
- •2.2.2. Экологические проблемы энергетики и влияние человека на окружающую среду
- •2.2.3. Экологические проблемы тепловой энергетики
- •2.2.4. Город и охрана природы
- •2.2.5. Экологические проблемы гидроэнергетики
- •2.2.6. Экологические проблемы ядерной энергетики
- •2.2.7. Некоторые пути решения проблем современной энергетики по охране окружающей среды
- •Алгоритм правильных ответов на вопросы, имеющие варианты ответа (для самопроверки).
- •Список литературы
- •1. Основная.
- •2. Дополнительная.
1.2.5. Подпитка тепловой сети
Протяжённость тепловых сетей в городах, особенно в мегаполисах, достигает несколько сотен километров, к тепловым сетям присоединены тысячи потребителей, поэтому утечки теплоносителя неизбежны. Потери тепла в системах теплоснабжения являются внешними потерями, которые характерны именно для ТЭЦ. Потери тепла иногда достигают нескольких сотен тонн в час. Поэтому на ТЭЦ эти потери должны восполняться, причём не сырой водой, а химически обработанной и деаэрированной.
Для восполнения потерь теплоносителя в сетях предусмотрено множество оборудования, собираются схемы подготовки добавочной воды именно для тепловых сетей. К числу оборудования подпитки теплосети можно отнести: подогреватель исходной сырой воды, различные фильтры химической водоочистки, деаэратор подпитки теплосети, причём применяются либо вакуумные деаэраторы, либо деаэраторы атмосферного типа, подпиточный насос и соответствующие соединительные трубопроводы и арматура.
На некоторых электростанциях дополнительно применяются декарбонизаторы, предназначенные для удаления углекислоты из добавочной воды. Декарбонизатор включается, как правило, перед вакуумным деаэратором, и уже насосом подпиточная вода из декарбонизатора направляется в деаэратор. Включение в схему подпитки теплосети декарбонизатора позволяет вместе с вакуумным деаэратором полностью удалить углекислоту из подпиточной воды. Этот способ основан на экспериментально установленном эффекте перераспределения долей углерода, удаляемых из добавочной воды в декарбонизаторах и вакуумных деаэраторах, при изменении температуры исходной воды перед декарбонизатором.
Таким образом, система подпитки добавочной воды для тепловой сети является важнейшим узлом ТЭЦ, к которой предъявляются жёсткие требования.
1.2.6. Основное и вспомогательное оборудование теплофикационных установок
Вода, подаваемая в тепловую сеть для нужд потребителей, на ТЭЦ подогревается в сетевых подогревателях турбоустановок, в пиковых подогревателях и в пиковых водогрейных котлах, которые относятся к основному теплофикационному оборудованию ТЭЦ. К вспомогательному теплофикационному оборудованию относятся: подпиточная установка теплосети, сетевые насосы, баки-аккумуляторы, рециркуляционные насосы водогрейных котлов и т.д.
Пиковые водогрейные котлы (ПВК) предназначены для установки на ТЭЦ с целью покрытия пиков теплофикационных нагрузок. Пиковые водогрейные котлы обычно устанавливаются в отдельных помещениях на крупных ТЭЦ или в главном корпусе на небольших ТЭЦ. Топливом этих котлов служит большей частью мазут или газ. Ввиду малого использования в течение года пиковые котлы выполняют простыми по конструкции и недорогими. Здание может выполняться лишь для нижней части котлов, верхняя часть их при этом остаётся на открытом воздухе. До ввода в работу ТЭЦ водогрейные котлы можно использовать для временного централизованного теплоснабжения района. Сетевая вода нагревается последовательно в сетевых подогревателях до 110÷1200С, а затем в ПВК до 1500С максимально.
Во избежание коррозии металла котла температура на входе в него должна быть не ниже 50÷600С, что достигается рециркуляцией и смешением горячей и холодной воды. Расчётный КПД водогрейных котлов на газе и мазуте достигает 91÷93%. Выпускаются и используются ПВК на угле. У них своя пылеподготовка, дымососы и другое оборудование.
Пароводяные подогреватели теплоподготовительных установок предназначены для подогрева сетевой воды паром от турбин или от котлов через редукционно-охладительные установки (сокращённо РОУ).
Сетевые насосы служат для подачи горячей воды по теплофикационным сетям и в зависимости от места установки применяются в качестве насосов первого подъёма, подающих воду из обратного трубопровода в сетевые подогреватели; второго подъёма для подачи воды после сетевых подогревателей в теплосеть; рециркуляционных, установленных после пиковых водогрейных котлов.
Сетевые насосы должны обладать повышенной надёжностью, так как перебои или неполадки в работе насосов сказываются на режиме работы ТЭЦ и потребителей.
Основной особенностью работы сетевых насосов являются колебания температуры подаваемой воды в широких пределах, что в свою очередь вызывает изменение давления внутри насоса. Сетевые насосы должны надёжно работать в широком диапазоне подач. Обычно сетевые насосы выполняются центробежными, горизонтальными, с приводом от электродвигателя.