
- •Курс лекций
- •Рецензия
- •Рецензия
- •Раздел 2 посвящен наиболее перспективным направлениям и разработкам в получении электрической энергии другими методами.
- •Содержание
- •Введение
- •Исторические условия возникновения и развития энергетической техники
- •Энергетические ресурсы и топливно-энергетический баланс.
- •Раздел 1. Тепловые электрические станции
- •Тема 1.1. Типы электрических станций
- •1.1.1. Классификация электрических станций
- •Контрольные вопросы.
- •1.1.2. Основные элементы паровых электростанций
- •1.1.3. Суточные графики потребления энергии
- •0 4 8 12 16 20 24 Часы суток
- •Тема 1.2. Технологическая схема тэс
- •1.2.1. Тепловая схема тэс
- •1.2.2. Тепловые нагрузки тэц
- •Контрольные вопросы.
- •1.2.3. Отопление и горячее водоснабжение (гвс)
- •1.2.4. Системы теплоснабжения
- •1.2.5. Подпитка тепловой сети
- •1.2.6. Основное и вспомогательное оборудование теплофикационных установок
- •Контрольные вопросы.
- •1.2.6. Топливный тракт электростанции
- •1.2.7. Сжигание жидкого топлива на электростанции
- •1.2.8. Сжигание газа на электростанции
- •Контрольные вопросы.
- •1.2.9. Газовоздушный тракт
- •1.2.10. Тракт шлакозолоудаления
- •Контрольные вопросы.
- •Тема 1.3. Органическое топливо
- •1.3.1. Виды органического топлива
- •1.3.2. Элементарный состав топлива
- •Контрольные вопросы.
- •1.3.3. Характеристики топлива.
- •1.3.4. Выход летучих и кокса, твёрдость топлива и коэффициент размолоспособности
- •1.3.5. Свойства топлива
- •Контрольные вопросы.
- •Тема 1.4. Элементы теории термодинамики
- •1.4.1. Общие определения в технической термодинамике и теплопередаче
- •1.4.2. Основные термодинамические параметры рабочего тела
- •1.4.3. Первый закон термодинамики
- •Контрольные вопросы.
- •1.4.4. Термодинамический процесс
- •1.4.5. Энтальпия
- •1.4.6. Основные термодинамические процессы в газах
- •1.4.7. Политропный процесс
- •1.4.8. Изохорный процесс
- •1.4.9. Изобарный процесс
- •1.4.10. Изотермический процесс
- •Контрольные вопросы.
- •1.4.12. Круговые процессы или циклы
- •1.4.13. Второй закон термодинамики
- •1.4.14. Цикл Карно
- •Контрольные вопросы.
- •1.4.15. Энтропия как параметр термодинамической системы.
- •1.4.16. Регенеративный цикл
- •1.4.17. Термодинамические процессы водяного пара
- •2. Удельную теплоту q1,2, подведённую к рабочему телу или отведённую от него находят по формулам:
- •4. При решении задач по h,s-диаграмме состояние рабочего тела определяют как точку пересечения любых двух линий и находят необходимые параметры пара.
- •1.4.18. Водяной пар
- •Контрольные вопросы.
- •1. Холодная вода при температуре 00с ― точки ɑ1, ɑ2, ɑ3.
- •1.4.20. Основные параметры воды и водяного пара
- •Контрольные вопросы.
- •Тема 1.5. Основное тепловое оборудование тэс
- •1.5.1. Общие сведения о паровых котлах
- •1.5.2. Устройство парового котла
- •Контрольные вопросы.
- •1.5.3. Основные параметры и обозначения паровых котлов
- •1.5.4. Поверхности нагрева паровых котлов
- •1.5.4.1. Экономайзеры
- •1.5.4.2. Испарительные поверхности нагрева
- •1.5.4.3. Пароперегреватели
- •1.5.4.4. Воздухоподогреватели
- •Контрольные вопросы.
- •1.5.5. Паровые турбины
- •1.5.6. Основные узлы и конструкция паровой турбины
- •1.5.7. Принципиальная схема конденсационной установки, устройство конденсатора
- •1.5.8. Воздухоотсасывающие устройства
- •1.5.9 Питательные и циркуляционные насосы
- •Контрольные вопросы.
- •Тема 1.6. Теплоэлектроцентрали (тэц)
- •1.6.1. Общие положения.
- •1.6.2. Регулирование тепловой нагрузки
- •1.6.3. Покрытие основной и пиковой отопительной нагрузок
- •1.6.3. Схемы включения сетевых подогревателей
- •1.6.4. Основное и вспомогательное оборудование теплофикационных установок
- •Контрольные вопросы.
- •Тема 1.7. Компоновка главного корпуса и генеральный план тэс
- •1.7.1. Основные требования, предъявляемые к компоновке тепловых электрических станций
- •1.7.2. Компоновка главного корпуса электростанции. Общие положения.
- •1.7.3. Типы компоновок главного корпуса
- •I. Степень закрытия основных агрегатов (турбин и котлов). По этому признаку компоновки главного корпуса разделяются на:
- •1. Закрытые компоновки, при которых турбоагрегаты находятся внутри соответствующих помещений. Этот тип является основным.
- •II. Взаимное расположение помещений для турбогенераторов и парогенераторов. Этот признак характеризует в основном компоновки закрытого типа. По этому признаку различают следующие варианты:
- •2. Турбоагрегаты и парогенераторы размещаются в двух отдельных параллельных зданиях, находящихся на небольшом расстоянии друг от друга и соединенных переходными
- •Контрольные вопросы.
- •1.7.3. Строительная компоновка главного корпуса тэс
- •1.7.4. Компоновка помещения парогенераторов
- •1.7.5. Компоновка машинного зала и деаэраторного отделения
- •1.7.6. Генеральный план электростанции
- •Контрольные вопросы.
- •Тема 1.8. Газотурбинные, парогазовые и атомные электрические станции
- •1.8.1. Газотурбинные электростанции
- •1. 8.2. Область применения гту
- •1.8.3. Парогазовые установки электростанции
- •1.8.2. Атомные электростанции. Общие сведения
- •2 Замедлитель 39Np нептуний
- •239Pu плутоний 235u Медленные нейтроны
- •1.8.3. Принципиальные тепловые схемы аэс
- •1.8.4. Сооружения, системы хранения и транспортировки топлива на аэс
- •Раздел 2. Альтернативные источники получения электрической энергии
- •Тема 2.1. Нетрадиционные способы получения электрической энергии
- •2.1.1. Электростанции, использующие нетрадиционные виды энергии
- •2.1.2. Гидроэлектростанции.
- •Тема 2.2. Энергетическое производство и окружающая среда
- •2.2.1. Экология
- •2.2.2. Экологические проблемы энергетики и влияние человека на окружающую среду
- •2.2.3. Экологические проблемы тепловой энергетики
- •2.2.4. Город и охрана природы
- •2.2.5. Экологические проблемы гидроэнергетики
- •2.2.6. Экологические проблемы ядерной энергетики
- •2.2.7. Некоторые пути решения проблем современной энергетики по охране окружающей среды
- •Алгоритм правильных ответов на вопросы, имеющие варианты ответа (для самопроверки).
- •Список литературы
- •1. Основная.
- •2. Дополнительная.
Исторические условия возникновения и развития энергетической техники
Так как под энергией понимают способность тел совершать работу, то физической основой энергетической техники является движение, переходящее из одной формы в другую.
Под энергетической техникой понимают совокупность средств производства, преобразования, передачи и распределения между потребителями различных форм энергии.
Фундаментальной теоретической основой энергетической техники является закон сохранения и превращения энергии.
В период первобытно-общинного строя единственным источником энергии являлись мускульные усилия человека. Освоение огня затем дало человеку источник тепловой энергии. Это было величайшим завоеванием человечества.
Лишь на поздних стадиях, уже на подступах к веку металла, начинается использование прирученных и одомашненных животных: слонов, лошадей, верблюдов, волов.
Биоэнергетика ― энергетика мускульных усилий господствовала многие тысячелетия. Она сохраняла свои позиции и в эпоху рабовладельческого общества, в котором труд раба ценился не выше, чем работа животных. Лишь когда концентрация мускульных усилий не в состоянии была решить техническую задачу (подъём больших тяжестей на высоту), стали применять изобретения древних механиков: блок, рычаг, наклонную плоскость и т.д.
Применение в рабовладельческий период (например, в I веке до нашей эры в Александрии) водяных колёс для орошения земель, а затем применение ветродвигателей (ветровые мельницы), не вызвало ещё сколько-нибудь серьёзных изменений в общем уровне энергетической техники.
Только в ХI веке, в эпоху феодального средневековья, в Европе начинают распространяться водяные и ветряные мельницы. Водяное колесо дало мощный толчок развитию металлургии, так как, во-первых, удалось повысить температуру в доменных печах, мехи которых приводились в движение от водяного колеса; во-вторых, расширились возможности откачки воды из шахт с помощью насосов, которые также приводились в движение от водяных колёс. Начиная с ХIII века, водяное колесо становится устройством, характеризующим технический уровень энергетической техники вплоть до промышленного переворота в конце ХVIII столетия.
Капиталистический способ производства вызвал к жизни новую энергетическую технику, основой которой стала паровая машина. Изобретение универсального парового двигателя явилось вторым этапом промышленного переворота ХVIII века. На смену ранней гидроэнергетике пришла теплоэнергетика.
Развитие энергетической техники протекало во взаимосвязи с развитием машин и характеризовалось непрерывным нарастанием единичных мощностей энергетических установок. В ХVIII веке в Англии была введена Уаттом единица измерения мощности «лошадиная сила», которая отражала реальные возможности одного из самых распространённых биологических «двигателей» прошлого ― конного привода. Единица мощности была определена исходя из работы, совершённой насосом, приводившимся в действие конной тягой, который откачивал воду из шахты в течение рабочего дня. Лучшие водяные и ветряные колёса средневековья достигали мощности 40÷60 лошадиных сил (1 л.с. = 0,736 кВт).
Электрификация ― это стержень современной энергетической техники. Тепловая энергия играет огромную роль в развитии энергетической техники. В энергетическом балансе тепловая энергия составляет огромную долю (97,6%) всей энергии, получаемой человеком от природы при сжигании различных видов топлива. Сюда же можно отнести часть тепловой энергии, которая получается в атомных реакторах.
Итак, качественные ступени развития энергетики можно представить в следующем виде:
1. Биоэнергетика ― использование в качестве источника механической работы биологической энергии человека и животных.
2. Механическая энергетика ― использование механической энергии потоков воды и воздуха.
3. Теплоэнергетика ― использование в качестве источника механической работы теплоты, выделяющейся при сжигании топлива.
4. Современная комплексная энергетика ― преимущественное использование в качестве первичной энергии тепловой и гидравлической, а в качестве вторичной ― электрической энергии.
5. Атомная энергетика ― использование энергии ядерных реакций.
6. Термоядерная энергетика ― использование реакции синтеза лёгких ядер с образованием более тяжёлых.
7. Использование нетрадиционных видов энергии: солнечной, приливов и отливов, МГД-генераторов и т.д.