Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Орлов. Основы классической ТРИЗ

.pdf
Скачиваний:
549
Добавлен:
06.05.2015
Размер:
19.81 Mб
Скачать

флюгарку 1, устанавливающуюся по направлению ветра благодаря наличию хвостовой лопасти 2, на которую воздействует ветер, и металлическую пластину 6, отклоняющуюся при большей силе ветра на больший угол.

При своем вращении вместе со штоком 5 флюгарка устанавливает металлическую пластину навстречу ветру. Противовес 3, уравновешивающий вес лопасти флюгарки, указывает направление ветра относительно неподвижных штырей 4, ориентированных на стороны света, а угол отклонения металлической пластины относительно неподвижной дуги 7 с угловыми измерительными отметками указывает силу ветра.

Этот старинный прибор не отличается большой точностью, так как флюгарка не поворачивается при малом ветре, а пластина не поднимается при малом ветре и неустойчиво ведет себя при большом ветре.

Можно сформулировать два одинаковых физических противоречия:

1) флюгарка должна быть большой и легкой, чтобы работать при малом ветре, и должна быть небольшой и тяжелой, чтобы устойчиво работать и не ломаться при большом ветре;

2)пластина должна быть большой и легкой, чтобы работал, при малом ветре,

идолжна быть небольшой и тяжелой, чтобы устойчиво работам, и не ломаться при большом ветре.

В идеале по ТРИЗ характеристику «малый», применительно к свойствам размер, вес или к каким-то негативным факторам, нужно стремиться представить как «нулевой вес» или «нулевой размер» и т. п. Но нулевая флюгарка и нулевая пластина вовсе не могут перемещаться! А это противоречит их принципу действия. Сделаем поправку: прежнему принципу действия, которому были присущи неразрешимые противоречия! А что. если попытаться создать флюгер с нулевыми размерами и весом флюгарки и пластины?! Это звучит как полный парадокс — «неподвижный флюгер».

Практически же это означает, что нужен новый принцип действия устройства с прежними функциями, но с лучшими показателями качества функционирования. Оставим за ним традиционное название — флюгер, может быть, с добавкой дополнительного определения по новому принципу действия.

Новый принцип действия должен основываться на общем принципе всех измерительных приборов — выявлении и оценке абсолютного различия между какой-то неизменной эталонной величиной (направления сторон света) и измеряемой переменной величиной (положение флюгарки, а точнее, угол отклонения флюгарки от базового направления, например, на Север и по движению часовой стрелки) либо различия между изменениями двух сопоставляемых величин, одна из которых изменяется быстрее, чем другая (разностные измерения).

Принимая последний подход, можно предположить, что набор потенциально подходящих эффектов может оказаться весьма большим. Попробуйте самостоятельно создать неподвижные флюгеры на иных принципах по сравнению с тем. который будет рассмотрен в качестве контрольного решения. А само

контрольное решение покажет общий способ преодоления стереотипов нашего мышления, что и будет главным полезным результатом этого примера.

Рассматривая каталоги технических эффектов, мы могли придти к выводу, что скорость ветра можно измерить, например, по степени охлаждения како- го-то нагретого тела, находящегося на ветру (пункт 1 Измерение температуры каталога Физические эффекты и группа эффектов под общим названием Термоэлектрические явления). Но как измерить таким способом направление ветра? Может быть, прикрыть одну часть нагретого тела от ветра, а другую оставить на ветру, и поворачивая это тело, найти положение, при котором оно охлаждается быстрее всего — это и будет означать, что найдено направление, откуда дует ветер. Возможно, но сложно и. по-видимому, медленно. Нужно уйти от механических перемещений.

Контрольное решение: сотрудниками DIMES Delft Institute of Microelectronics ana Submicron-technology при Delft University of Technology (Голландия) разработан флюгер (рис. 13.5), представляющий собой кремниевую микросхему примерно 5 x 5 мм2, с каждой стороны которой размешена миниатурная термопара.

Снизу микросхема равномерно подогревается. С той стороны, откуда дует ветер, микросхема несколько охлаждается, что сразу же замечает высокочувствительная термопара. Если ветер имеет промежуточное положение, по-разно- му срабатывают две термопары, фиксируя разное охлаждение сторон микросхемы, на которых они закреплены.

Чем больше скорость ветра, тем больше охлаждение. Направление ветра вычисляет сама микросхема по разности токов, вырабатываемых термопарами.

Этот пример демонстрирует также великолепное решение по свертыванию системы — исключению лишних, неэффективно работающих или ненадежных элементов (см. раздел 15.2.4 Мета-модель «Волна эволюции»). Новый принцип позволил создать компактную систему без подвижных частей, работающую точно в более широком диапазоне — при силе ветра от К) сантиметров до 60 метров в секунду.

Пример 95. Perpetuum Mobile для человечества?! Еще более впечатляющий при-

мер свертывания появляется перед нами при рассмотрении идей создания двигателя на водородном топливе. Инерция мышления тут же рисует нам работу нового двигателя внутреннего сгорания, в котором в качестве топлива

вместо бензина сгорает водород, соединяясь с кислородом с образованием воды как отхода. Мы воображаем, что такой двигатель абсолютно идеален экологически, и одно это уже выглядит совершенно замечательно! Однако на этот раз в реальности дело обстоит еще лучше — и намного!

Дело в том, что в новых водородных двигателях фирмы DaimlerChrycler, Deutschland ничего не сгорает, так как они... вовсе не являются двигателями внутреннего сгорания! И это изобретение несет в себе новую техническую революцию, значение которой может оказаться и не оцененным в полной мере, и вновь из-за инерции мышления. Да, автомобиль будущего будет безупречен экологически, будет иметь высокий коэффициент полезного действия и высокую надежность двигательной установки на основе электромотора. Но! Но заправляться он будет внешне так же, как и раньше — на автозаправочных станциях, из шланга. И именно сохранение всех привычных действий по обслуживанию и управлению автомобилем не позволит заметить пришедшей революции! Ну что ж, пусть так и будет! Это будет реальный пример того, что действительно в цивилизации могут незаметно происходить грандиозные по масштабам революционные изменения! Остается только надеяться, что все они будут такими же позитивными, как приход новых автомобилей, которые, возможно, получат общее название NECAR (от New Electric Car) — так называется сегодня одна из испытательных серий такого автомобиля концерна DaimlerChrycler.

Этот пример я привожу не как пример реинвентинга, а как пример выдающейся реализации комплекса физико-химических эффектов, лежащих в основе принципа действия прежде всего нового источника электроэнергии, а затем уже и новой двигательной и энергетической системы автомобиля. Хотя применение новой идеи этим далеко не ограничивается. А выводы для пополнения своих изобретательских знаний, не меньшие по значению, чем при реинвентинге, я надеюсь, Вы успешно сделаете сами.

На рис. 13.6 показаны сразу два варианта одной ячейки нового источника электроэнергии некара: 1 — на основе заранее заготовленного водорода и II — на основе водорода, получаемого непосредственно на борту автомобиля.

По схеме 1 водород пропускается через пористый анод 1, и его протоны в присутствии катализаторов 3 проникают через мембрану 4 (РЕМ — Proton Exchange Membrane) в катод 2, при этом на аноде 1 образуется отрицательный электрический заряд, а на катоде 2 — положительный. При соединении в пористом катоде 2 водорода с кислородом действительно образуется вода, как отход. Первичные энергетические ячейки соединяются последовательно в большие батареи, к полюсам которой может быть подключена нагрузка, например, электродвигатель постоянного тока и система электропитания автомобиля.

Схема II, разрабатываемая фирмой XCELLSIS, дочерней фирмой концерна DaimlerChrycler, отличается от схемы 1 только тем, что водород образуется прямо на борту автомобиля из смеси метанола с водой. При этой реакции, сопровождающейся выделением тепла, образуется также углекислый газ, однако в три раза меньше (!), чем в современных самых «чистых» двигателях внутреннего сгорания. По этой причине создатели некара назвали его «нуль-эмиссионным» автомобилем. Для заправки «некара» метанолом могут быть переоборудованы обычные бензиновые заправочные станции. Но и первая схема представляет интерес для крупных автотранспортных предприятий, которые могут иметь централизованные хранилища емкостей с водородом и обеспечить безопасную смену этих емкостей для грузовых автомобилей или автобусов.

Создание некара означает окончание почти полуторавековой эры автомобиля на основе двигателя внутреннего сгорания — одного из выдающихся изобретений цивилизации и одновременно одного из главных загрязнителей атмосферы (см. пример 112 и весь раздел 15.3 Интеграция альтернативных систем). Но это может означать и нечто большее, так как по мнению специалистов новые энергетические источники смогут конкурировать с солнечными, ветровыми или водными источниками электроэнергии! Они предполагают также, что источники с новым принципом действия могут стать настолько эффективными и разнообразными, что найдут применение от мопедов и газонокосилок до лэптопов и хэнди.

В заключение этого примера и раздела в целом следует отметить еще раз, что наиболее радикальные изменения несут, конечно, изобретения, основанные на новых принципах действия технических систем. А в основе таких изобретений лежат новые знания и открытия, полученные в результате научных исследований. Эти знания и есть интеллектуальная база для пополнения банка технических эффектов, база для изобретения технических систем на новых принципах функционирования.

19.Рекламный плакат (1). Рекламные плакаты, в том числе, огромных размеров, можно видеть сейчас везде — на боках автобусов и трамваев, на стенах домов и в холлах зданий. Плакат имеет на обратной стороне клеевой слой, и поэтому его наклейка требует тщательной примерки, так как после предварительного приклеивания хотя бы небольшого куска плаката исправить его ориентацию очень сложно, можно повредить материал плаката. Противоречие: плакат должен легко переметаться при наклейке и должен надежно фиксироваться при правильном размещении. Что можно предложить?

20.Рекламный плакат (2). Как сделать плакат, которым можно полностью заклеить всю внешнюю поверхность и все окна автобуса? Ведь должны же пассажиры что-то видеть из автобуса?!

21.Любая сковородка — тефлоновая! Как сделать любую сковородку или, например, гусятницу, уже имеющиеся у Вас дома, непригорающими?

22.Дверной звонок. Как сделать, чтобы в любом месте Вашей квартиры пли большого дома Вы могли услышать звонок в дверь?

23.Износ шин. Каким образом шина может сама сообщи п. о степени своего износа?

24.Нейтрализация выхлопных газов холодного двигателя. Особенно вредные выхлопные газы холодного, только что запущенного, двигателя. Каким образом можно устранить уровень загрязнения атмосферы самыми опасными первыми выхлопами?

25.Греющая одежда. Обычная одежда не греет. Она является пассивной системой, сохраняющей тепло, исходящее от тела. Предложите возможные принципы действия активной обогревающей одежды.

26.Микропинцет. Каким пинцетом можно плотно, но безвредно, работать на сосудах головного мозга, если размер закрытого рабочего острим пинцета чуть более 0,5 мм?

27.Как живут орлы и грифы? Каким образом можно обеспечить многомесячное непрерывнеое наблюдение за гнездом, ведь ни один наблюдатель не просидит, скажем, на соседней скале все это время?

28.Белый светодиод. Известно, что полупроводниковые светодиоды изл

свет в синем, красном и зеленом диапазоне. Каким образом можно от миниатюрного светодиода получить, например, белый свет?

29.Зеркало для телескопа. Как изготовить зеркало идеальной вогнутой параболической формы из расплавленной стеклокерамики для телескопа диаметром 8 метров?

30.Заморозка ягод и фруктов. В известных установках быстрого замораживания свежих ягод и фруктов на подающем конвейере идет предварительная заморозка, чтобы продукты не смерзались вместе при последующей глубокой заморозке. Для окончательной заморозки продукты отделяются от конвейера, но при этом могут повреждаться. Каким образом можно улучшить весь процесс заморозки и исключить повреждение продуктов?

31.Непадающая зубная щетка. Зубную щетку, чтобы она высыхала, а также и не падала иногда с полочки в ванной, ставят в стакан или подвешивают, пропуская ручку в отверстие полочки. Вопрос: можно ли. опираясь на школьные знания по физике, сделать шетку с новым принципом функционирования, такую, чтобы, например, она сама стояла на полочке?

32.Тренировка скалолазов. Каким образом можно обеспечить тренировки спортсменов в обычном спортивном зале так, чтобы условия тренировки были максимально похожи на реальные и не было привыкания к одним и тем же «скальным поверхностям»?

33.Супермаховик. Супермаховик представляет собой диск, полученный навивкой обода 1 из высокопрочной ленты (проволоки, волокон) на несущий центр 2, также имеющий форму диска и отливаемый, например, из дюралюминия. Такие маховики могут служить, например, источниками энергии на несколь-

ко часов движения автомобиля, для создания робототехнических подвижных систем с механическими принципами работы во взрывоопасных средах, не допускающих появления электрических искр.

Проблема состоит в том, что ни один центр не выдерживает деформации расширения, когда при гигантских ускорениях в сотни тысяч g (g — ускорение свободного падения) охватывающий обод перестает сдавливать центр. Место начала разрушения диска приходится на держатель обода.

Известно также, что компенсаторы зазора между ободом и диском также не выдерживают и ломаются. после чего ломается и центр.

Нет ли у Вас подходящей идеи для создания надежного центра и всего супермаховика?

34. Испытания провода. Каким образом можно провести испытания контактного провода и токосъемного устройства для высокоскоростных поездов, если через провод должен проходить ток до 1000 ампер, а скорость поезда может достигать 500 км/час? По техническим условиям провод должен выдерживать не менее 2 миллионов проходов по нему токосъемника!

Стратегия изобретения

Проектирование технических систем, сто лет назад бывшее искусством, стало точной наукой и превращается в науку о развитии систем.

Появление ТРИЗ, ее быстрое развитие — не случайность, а необходимость, продиктованная современной научно-технической революцией.

Работа «по ТРИЗ» неизбежно вытеснит работу «наугад».

Но человеческий ум не останется без дела: люди будут думать над еще более сложными задачами.

Генрих Альтшуллер

ТРИЗ не предсказывает будущее, но с помощью ТРИЗ Вы сможете прогнозировать развитие любой технической системы.

Основу для прогнозирования дают наиболее общие закономерности (мета-мо- дели) развития систем, выявленные при исследовании сотен тысяч изобретений, многие из которых были направлены на усовершенствование одного и того же типа систем на протяжении нескольких десятков лет.

Мета-модели развития включают так называемые «ТРИЗ-Законы», «Линии системного развития», «Законы развертывания и свертывания систем», модели «Полиэкран» и «Системные переходы», метод «Интеграции альтернативных систем» и другие модели.

Техника и наука стремительно усложняются. Стремительно происходит дальнейшая специализация и дифференциация знаний. Негативной стороной этих процессов является опасность искажения и подмены позитивных глобальных целей развития систем, разрушение самих критериев оценки прогрессивности или регрессивности создаваемых систем в угоду эгоистическим и корыстным интересам тех или иных производителей продукции или политическим амбициям.

Нужно и можно противостоять этим опасным тенденциям. Этому в немалой степени должно способствовать понимание инженерами и учеными стратегических закономерностей развития систем, использование этих закономерностей для целенаправленной разработки систем, отвечающих критериям глобальной полезности.

Прохождение жизненного цикла каждой технической системы (ТС) от изобретения до прекращения выпуска и утилизации определяется сложным взаимодействием большого числа факторов. Наиболее крупные группы (66) «влияния» представлены на рис. 14.1.

Системы обслуживания обеспечивают защиту действующих образцов ТС от разрушающего влияния окружающей среды. При этом следует отметить, что все ТС непрерывно «стареют» под воздействием среды.

Системы модернизации обеспечивают модификацию ТС применительно к новым условиям эксплуатации. При этом противодействующие системы (например, деталь для обрабатывающего инструмента) неуклонно увеличивают износ ТС, сокращают продолжительность жизни конкретного образца ТС или разрушают его.

Системы эксплуатации (например, автоводитель) могут использовать ТС бережно, т. е. со знаком (+) около соответствующей связи-стрелки, а могут — на экстремальных режимах, т. е. со знаком (—). В конце концов каждый конкретный экземпляр ТС подвергается воздействию системы утилизации, при этом последняя оказывает на ТС сугубо негативное, разрушительное физическое воздействие, т. е. со знаком (—).

Творческие системы, включающие обширный круг изобретателей, конструкторов, изготовителей, продавцов (!) и т. д., в соответствии с «Законом роста идеальности» (см. след. раздел) обеспечивают непрерывное усовершенствование ТС. При этом для действующих образцов ТС одинаково гибельно замещение их как продукцией конкурентов, так и новыми образцами одного изготовителя.

Эволюция искусственных систем содержит исключительно драматическое противоречие. С точки зрения получения максимальной интегральной эффективности от действующего образца ТС следовало бы стремиться к его максимальной долговечности. Однако, намного раньше изготовитель вынужден создавать новые образцы как по результатам эксплуатации, так и с учетом возможного появления конкурирующей продукции. Изготовителю и его «сфере влияния» нужна незаурядная изобретательность для управления развитием производимого вида ТС, то есть, для рациональной модернизации, смены типов и поколений.