
- •1 Вопрос Определители 2-го порядка
- •2 Вопрос Миноры и дополнения
- •3 Вопрос Определитель n-го порядка
- •3.1 Метод математической индукции
- •3.2 Вычисление определителя n-го порядка по минорам и ад
- •3.3 Верхне треугольный определитель
- •4 Вопрос
- •5. Вопрос
- •6 Вопрос. Системы линейных уравнений Определенность системы линейных уравнений. Совместность, несовместность (6.1)
- •Матричная форма записи m линейных уравнений с n неизвестными
- •9 Вопрос
- •Эквивалентные матрицы и системы
- •Ступенчатые матрицы; сведение матрицы к ступенчатой
- •10 Вопрос (Метод Гаусса) Решение произвольной системы линейных уравнений
- •11 Вопрос
- •12 Вопрос
- •14 Вопрос
- •Сложение векторов
- •Свойства линейного пространства
- •2) Ассоциативность
- •15 Вопрос а) Линейно – зависимые векторы и их свойства
- •Б) Формулировки теорем о линейной зависимости коллениарных и компланарных векторов
- •В) Формулировка теоремы о линейной зависимости четырех векторов.
- •16 Вопрос
- •19 Вопрос Исследование систем линейных уравнений Однородные системы
- •Решение неоднородных систем
- •Доказательство достаточности теоремы Кронеккер-Капелли
- •Доказательство критерия определённости системы
- •20 Вопрос
- •21 Вопрос
- •Свойства векторного произведения .(антикоммутативность, линейность и однородность)
- •Доказательство Леммы 25.1:
- •Векторное произведение базисных ортов
- •Свойства смешанного произведения
- •28 Вопрос Смешанное произведение векторов в координатной форме
- •36 Вопрос
- •Общее уравнение плоскости и его исследование
- •37 Вопрос Условия параллельности и перпендикулярности двух плоскостей, угол между ними Взаимное расположение двух плоскостей
- •Условие перпендикулярности
- •38 Вопрос
- •Уравнение плоскости, проходящей через три заданные точки
- •Уравнение плоскости в отрезках
- •39 Вопрос Расстояние от точки до плоскости
- •40 Вопрос Прямая как пересечение двух плоскостей. Общее уравнение прямой в пространстве
- •Каноническое уравнение прямой как уравнение прямой в пространстве проходящей через заданную точку и коллинеарной заданному вектору
- •Параметрическое уравнение прямой в пространстве
- •41 Вопрос Приведение общего уравнения прямой к каноническому виду
- •2) Найти направляющий вектор прямой .
- •Условие ортогональности и перпендикулярности прямых
- •44 Вопрос
- •Угол между прямой и плоскостью. Условие их перпендикулярности
- •Точка пересечения прямой и плоскости
- •45 Вопрос Расстояние от точки до прямой в пространстве
- •46 Вопрос Расстояние между скрещивающимися прямым
- •47 Вопрос
- •(47.17)
- •(47.31)
- •(47.18)
- •(47.20)
- •(47.24)
- •(47.25)
- •Эллиптический цилиндр
- •II. Гиперболический цилиндр
- •III. Параболический цилиндр
- •(47.32)
- •(35.21)
- •(47.36)
Эллиптический цилиндр
Определение 47.8 Эллиптическим цилиндром называется поверхность, координаты всех точек которой в некоторой системе удовлетворяют уравнению
Рис.47.15 Рис.47.16
В сечении эллиптического цилиндра плоскостями могут получиться:
-эллипс (если плоскость не параллельна образующей цилиндра или не проходит через неё; читателю предлагается самостоятельно показать, что в сечении эллиптического цилиндра такой плоскостью должна получиться некоторая ограниченная кривая второго порядка, т.е. эллипс);
-две прямые параллельные линии (когда плоскость параллельна образующей цилиндра или проходит через неё, а также пересекает, но не касается эллиптического цилиндра)
-одна прямая линия (для плоскости, касающейся эллиптического цилиндра);
-пустое множество (в случае, когда плоскость не пересекает эллиптический цилиндр).
II. Гиперболический цилиндр
Определение 47.9 Гиперболическим цилиндром называется поверхность, координаты всех точек которой в некоторой системе координат удовлетворяют уравнению:
(34.1)
Общий вид гиперболического цилиндра изображён на рис.47.17
В сечении гиперболического цилиндра плоскостями могут получиться:
-гипербола (когда секущая плоскость не параллельна образующей гиперболического цилиндра или не пересекает её; читателю предлагаем самостоятельно доказать, что в этом случае в секущей плоскости должна получиться некоторая разрывная кривая второго порядка, т.е. гипербола);
- две прямые параллельные линии (в случае, если плоскость параллельна образующей гиперболического цилиндра (оси аппликат OZ) или проходит через неё, а также пересекает поверхность, но не касается её);
-одна прямая линия (для плоскости, касающейся цилиндрической поверхности);
-пустое множество (в случае, когда плоскость не пересекает гиперболический цилиндр).
III. Параболический цилиндр
Определение 47.10. Параболическим цилиндром называется поверхность, координаты всех точек которой в некоторой системе координат удовлетворяют уравнению:
(34.3)
Общий вид параболического цилиндра изображён на рис. 47.18.
В сечении параболического цилиндра плоскостями могут получаться:
-парабола (когда секущая плоскость не параллельна образующей параболического цилиндра или не пересекает её; читателю предлагаем самостоятельно доказать, что в этом случае в секущей плоскости должна получиться некоторая неограниченная непрерывная кривая второго порядка, т.е. парабола)
- две прямые
параллельные линии (если
секущая плоскость параллельна образующей
параболического цилиндра (оси аппликат
OZ)
или проходит через неё, а также пересекает
поверхность, но не касается её); или
параллельна плоскости
-одна прямая линия (в случае, когда плоскость касается цилиндрической поверхности);
-пустое множество (для плоскости, не пересекающей параболический цилиндр).
Остальные цилиндрические поверхности являются распадающимися или вырожденными (согласно, например, параграфу 35) и будут рассмотрены в п. 47.7.
Ж) Конус второго порядка
Конусом второго порядка называется поверхность, координаты всех точек которой в некоторой системе координат удовлетворяют уравнению
(47.8)
Отметим, что если
координаты точки
удовлетворяют уравнению (47.8), то и для
любого действительногоt
координаты точки
также удовлетворяют этому уравнению.
Поэтому, если точка
лежит на конусе (47.8), то и вся прямая