Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ЭЭ Второй семестр ЗОТФ

.doc
Скачиваний:
21
Добавлен:
03.05.2015
Размер:
919.55 Кб
Скачать

Вариант 18 ЭУ

1.

Найти все частные производные второго порядка заданной функции двух переменных, доказав при этом равенство смешанных производных.

2.

Определить тип дифференциального уравнения первого порядка и найти его общее решение:

3.

Определить частное решение линейного дифференциального уравнения второго порядка с постоянными коэффициентами, удовлетворяющее заданным начальным условиям: .

4.

Исследовать числовые ряды на сходимость.

5.

Найти область сходимости числового ряда:

Вариант 19 ЭУ

1.

Найти все частные производные второго порядка заданной функции двух переменных, доказав при этом равенство смешанных производных.

2.

Определить тип дифференциального уравнения первого порядка и найти его общее решение:

3.

Определить частное решение линейного дифференциального уравнения второго порядка с постоянными коэффициентами, удовлетворяющее заданным начальным условиям: .

4.

Исследовать числовые ряды на сходимость.

5.

Найти область сходимости числового ряда:

Вариант 20 ЭУ

1.

Найти все частные производные второго порядка заданной функции двух переменных, доказав при этом равенство смешанных производных.

2.

Определить тип дифференциального уравнения первого порядка и найти его общее решение:

3.

Определить частное решение линейного дифференциального уравнения второго порядка с постоянными коэффициентами, удовлетворяющее заданным начальным условиям: .

4.

Исследовать числовые ряды на сходимость.

5.

Написать пять членов разложения функции в ряд Маклорена.

Вариант 21 ЭУ

1.

Найти все частные производные второго порядка заданной функции двух переменных, доказав при этом равенство смешанных производных.

2.

Определить тип дифференциального уравнения первого порядка и найти его общее решение:

3.

Определить частное решение линейного дифференциального уравнения второго порядка с постоянными коэффициентами, удовлетворяющее заданным начальным условиям: .

4.

Исследовать числовые ряды на сходимость.

5.

Найти область сходимости числового ряда:

Вариант 22 ЭУ

1.

Найти все частные производные второго порядка заданной функции двух переменных, доказав при этом равенство смешанных производных.

2.

Определить тип дифференциального уравнения первого порядка и найти его общее решение:

3.

Определить частное решение линейного дифференциального уравнения второго порядка с постоянными коэффициентами, удовлетворяющее заданным начальным условиям: .

4.

Исследовать числовые ряды на сходимость.

5.

Найти область сходимости числового ряда:

Вариант 23 ЭУ

1.

Найти все частные производные второго порядка заданной функции двух переменных, доказав при этом равенство смешанных производных.

2.

Определить тип дифференциального уравнения первого порядка и найти его общее решение:

3.

Определить частное решение линейного дифференциального уравнения второго порядка с постоянными коэффициентами, удовлетворяющее заданным начальным условиям: .

4.

Исследовать числовые ряды на сходимость.

5.

Найти область сходимости числового ряда:

Вариант 24 ЭУ

1.

Найти все частные производные второго порядка заданной функции двух переменных, доказав при этом равенство смешанных производных.

2.

Определить тип дифференциального уравнения первого порядка и найти его общее решение:

3.

Определить частное решение линейного дифференциального уравнения второго порядка с постоянными коэффициентами, удовлетворяющее заданным начальным условиям: .

4.

Исследовать числовые ряды на сходимость.

5.

Найти область сходимости числового ряда:

Вариант 25 ЭУ

1.

Найти все частные производные второго порядка заданной функции двух переменных, доказав при этом равенство смешанных производных.

2.

Определить тип дифференциального уравнения первого порядка и найти его общее решение:

3.

Определить частное решение линейного дифференциального уравнения второго порядка с постоянными коэффициентами, удовлетворяющее заданным начальным условиям: .

4.

Исследовать числовые ряды на сходимость.

5.

Написать пять членов разложения функции в ряд Маклорена.

Вариант 26 ЭУ

1.

Найти все частные производные второго порядка заданной функции двух переменных, доказав при этом равенство смешанных производных.

2.

Определить тип дифференциального уравнения первого порядка и найти его общее решение:

3.

Определить частное решение линейного дифференциального уравнения второго порядка с постоянными коэффициентами, удовлетворяющее заданным начальным условиям: .

4.

Исследовать числовые ряды на сходимость.

5.

Найти область сходимости числового ряда:

Вариант 27 ЭУ

1.

Найти все частные производные второго порядка заданной функции двух переменных, доказав при этом равенство смешанных производных.

2.

Определить тип дифференциального уравнения первого порядка и найти его общее решение:

3.

Определить частное решение линейного дифференциального уравнения второго порядка с постоянными коэффициентами, удовлетворяющее заданным начальным условиям: .

4.

Исследовать числовые ряды на сходимость.

5.

Найти область сходимости числового ряда:

Вариант 28 ЭУ

1.

Найти все частные производные второго порядка заданной функции двух переменных, доказав при этом равенство смешанных производных.

2.

Определить тип дифференциального уравнения первого порядка и найти его общее решение:

3.

Определить частное решение линейного дифференциального уравнения второго порядка с постоянными коэффициентами, удовлетворяющее заданным начальным условиям: .

4.

Исследовать числовые ряды на сходимость.

5.

Найти область сходимости числового ряда:

Вариант 29 ЭУ

1.

Найти все частные производные второго порядка заданной функции двух переменных, доказав при этом равенство смешанных производных.

2.

Определить тип дифференциального уравнения первого порядка и найти его общее решение:

3.

Определить частное решение линейного дифференциального уравнения второго порядка с постоянными коэффициентами, удовлетворяющее заданным начальным условиям: .

4.

Исследовать числовые ряды на сходимость.

5.

Найти область сходимости числового ряда:

Вариант 30 ЭУ

1.

Найти все частные производные второго порядка заданной функции двух переменных, доказав при этом равенство смешанных производных.

2.

Определить тип дифференциального уравнения первого порядка и найти его общее решение:

3.

Определить частное решение линейного дифференциального уравнения второго порядка с постоянными коэффициентами, удовлетворяющее заданным начальным условиям:

4.

Исследовать числовые ряды на сходимость.

5.

Написать пять членов разложения функции в ряд Маклорена.

Вариант 31ЭУ

1.

Найти все частные производные второго порядка заданной функции двух переменных, доказав при этом равенство смешанных производных.

2.

Определить тип дифференциального уравнения первого порядка и найти его общее решение:

3.

Определить частное решение линейного дифференциального уравнения второго порядка с постоянными коэффициентами, удовлетворяющее заданным начальным условиям: .

4.

Исследовать числовые ряды на сходимость.

5.

Найти область сходимости числового ряда:

Вариант 32 ЭУ

1.

Найти все частные производные второго порядка заданной функции двух переменных, доказав при этом равенство смешанных производных.

2.

Определить тип дифференциального уравнения первого порядка и найти его общее решение:

3.

Определить частное решение линейного дифференциального уравнения второго порядка с постоянными коэффициентами, удовлетворяющее заданным начальным условиям: .

4.

Исследовать числовые ряды на сходимость.

5.

Найти область сходимости числового ряда:

Вариант 33 ЭУ

1.

Найти все частные производные второго порядка заданной функции двух переменных, доказав при этом равенство смешанных производных.

2.

Определить тип дифференциального уравнения первого порядка и найти его общее решение:

3.

Определить частное решение линейного дифференциального уравнения второго порядка с постоянными коэффициентами, удовлетворяющее заданным начальным условиям: .

4.

Исследовать числовые ряды на сходимость.

5.

Найти область сходимости числового ряда:

Вариант 34 ЭУ

1.

Найти все частные производные второго порядка заданной функции двух переменных, доказав при этом равенство смешанных производных.

2.

Определить тип дифференциального уравнения первого порядка и найти его общее решение:

3.

Определить частное решение линейного дифференциального уравнения второго порядка с постоянными коэффициентами, удовлетворяющее заданным начальным условиям: .

4.

Исследовать числовые ряды на сходимость.

5.

Написать пять членов разложения функции в ряд Маклорена.

Вариант 35 ЭУ

1.

Найти все частные производные второго порядка заданной функции двух переменных, доказав при этом равенство смешанных производных.

2.

Определить тип дифференциального уравнения первого порядка и найти его общее решение:

3.

Определить частное решение линейного дифференциального уравнения второго порядка с постоянными коэффициентами, удовлетворяющее заданным начальным условиям: .

4.

Исследовать числовые ряды на сходимость.

5.

Найти область сходимости числового ряда: