
- •Основы биологической химии предисловие
- •Введение Предмет и задачи биохимии
- •Основные признаки живой материи
- •Глава 1. Химический состав организмов
- •Глава 2. Структура и свойства белков
- •2.1. Роль и определение белков.
- •2.2. Функции белков в организме
- •2.3. Элементный состав белков. Содержание белков в органах и тканях
- •2.4. Аминокислотный состав белков
- •2.5. Кислотно-основные свойства аминокислот
- •2.6. Стереохимия аминокислот
- •2.7. Строение белков
- •2.8. Уровни структурной организации белков
- •Первичная структура
- •Вторичная структура белков
- •Третичная структура белков
- •Четвертичная структура белков
- •2.9. Физико-химические свойства белков
- •Кислотно-основные свойства белков
- •Растворимость белков
- •Денатурация и ренатурация
- •2.10. Классификация белков
- •2.11. Методы выделения и очистки белков
- •Очистка белков
- •Глава 3. Углеводы
- •3.1. Понятие об углеводах и их классификация
- •3.2. Моносахариды
- •Оптические свойства моносахаридов
- •Структура моносахаридов
- •3.3. Химические свойства моносахаридов Реакции с участием карбонильной группы
- •Реакции с участием гидроксильных групп
- •3.4. Сложные углеводы
- •Олигосахариды
- •Полисахариды
- •Гомополисахариды
- •Гетерополисахариды
- •3.5. Биологические функции углеводов
- •Глава 4. Нуклеиновые кислоты
- •4.1. Общая характеристика нуклеиновых кислот
- •4.2. Химический состав и строение нуклеиновых кислот
- •4.3. Уровни структурной организации нуклеиновых кислот
- •Первичная структура нуклеиновых кислот
- •Вторичная структура днк
- •Вторичная структура рнк
- •Третичная структура рнк и днк
- •Глава 5. Липиды
- •5.1. Общая характеристика и классификация липидов
- •5.2. Липидные мономеры
- •5.3. Многокомпонентные липиды
- •5.4. Биологические функции липидов
- •Глава 6. Ферменты
- •6.2. Химическая природа и структура ферментов
- •6.3. Кофакторы ферментов Ионы металлов как кофакторы ферментов
- •Коферменты
- •6.4. Механизм действия ферментов
- •6.5. Свойства ферментов
- •6.6. Специфичность действия ферментов
- •6.7. Факторы, влияющие на скорость ферментативного катализа
- •Влияние температуры на активность ферментов
- •Влияние рН на активность ферментов
- •Влияние концентраций субстрата и фермента на скорость ферментативной реакции
- •Зависимость скорости реакции от времени
- •6.8. Регуляция активности ферментов
- •Активация ферментов
- •Ингибирование ферментов
- •Аллостерическая регуляций действия ферментов
- •6.9. Определение активности ферментов
- •6.10. Номенклатура и классификация ферментов
- •6.11. Локализация ферментов в организме и клетке
- •6.12. Применение ферментов
- •Глава 7. Витамины
- •7.1.Понятие о витаминах
- •7.2. Классификация витаминов
- •7.3. Жирорастворимые витамины
- •7.4. Водорастворимые витамины
- •7.5. Витаминоподобные вещества
- •Глава 8. Общие закономерности обмена веществ и энергии в организме
- •8.1. Обмен веществ
- •8.2. Обмен энергии
- •Глава 9. Биологическое окисление
- •9.2. Дыхательная цепь
- •9.3. Окислительное фосфорилирование
- •Глава 10. Обмен углеводов
- •10.1. Переваривание углеводов
- •10.2. Метаболизм глюкозы
- •10.3. Биосинтез гликогена
- •10.4. Распад гликогена
- •10.5. Анаэробный гликолиз
- •10.6. Аэробный распад глюкозы
- •Аэробный распад глюкозы в мозге
- •10.7. Пентозофосфатный цикл
- •10.8. Биосинтез глюкозы (глюконеогенез)
- •10.10. Регуляция обмена углеводов
- •Глава 11. Обмен липидов
- •11.1. Переваривание липидов
- •11.2. Метаболизм глицерина
- •11.3. Метаболизм жирных кислот
- •11.4. Биосинтез жиров
- •11.5. Регуляция обмена липидов
- •Глава 12. Обмен нуклеиновых кислот
- •12.1. Пути распада рнк и днк
- •12.2. Распад пуриновых и пиримидиновых оснований
- •12.3. Биосинтез нуклеотидов
- •Биосинтез пурииовых нуклеотидов
- •Биосинтез пиримидиновых нуклеотидов
- •Биосинтез дезоксирибонуклеотидов
- •12.4. Биосинтез нуклеиновых кислот
- •Биосинтез днк (репликация)
- •Биосинтез рнк (транскрипция)
- •Безматричный синтез рнк
- •12.5. Путь информации от генотипа к фенотипу
- •Глава 13. Обмен белков
- •13.1. Понятие об обмене белков
- •13.2. Переваривание белков пищи и распад белков тканей Переваривание белков
- •Распад белков в тканях
- •13.3. Метаболизм аминокислот
- •Трансаминирование аминокислот
- •Дезамииирование аминокислот
- •Превращение углеродных скелетов аминокислот. Реакции декарбоксилирования
- •13.4. Удаление аммиака из организма. Орнитиновый цикл
- •13.5. Синтез аминокислот
- •13.6. Биосинтез белков (трансляция)
- •Глава 14. Водно-солевой и минеральный обмен
- •14.1. Водно-солевой обмен Содержание воды в организме и клетке
- •Роль и функции воды в процессе жизнедеятельности
- •14.2. Регуляция водно-солевого обмена
- •Регуляция рН
- •14.3. Минеральный обмен Минеральные вещества
- •Функции минеральных веществ
- •Минеральные вещества и обмен нуклеиновых кислот
- •Минеральные вещества и обмен белков
- •Минеральные вещества и обмен углеводов и липидов
- •14.4. Регуляция минерального обмена
- •Глава 15. Взаимосвязь обмена белков, жиров, углеводов и нуклеиновых кислот
- •Глава 16. Гормоны, нервно-гормональная регуляция обмена веществ
- •16.1. Понятие о гормонах. Основные принципы регуляции обмена веществ
- •16.2. Классификация гормонов
- •16.3. Общие представления о действии гормонов
- •16.4. Гормоны щитовидной и паращитовидных желез Гормоны щитовидной железы
- •Гормоны паращитовидных желез
- •16.5. Гормоны поджелудочной железы
- •16.6. Гормоны надпочечников
- •16.7. Гормоны половых желез
- •16.8. Гормоны гипоталамо-гипофизарной системы
- •16.9. Гормоны тимуса и эпифиза
- •16.10. Простагландины
- •16.11. Биохимическая адаптация
- •Рекомендуемая литература
- •Оглавление
7.2. Классификация витаминов
Витамины делят по растворимости на две группы: жирорастворимые и водорастворимые витамины. Первые по строению близки к углеводородам и не содержат полярных групп. Вторые - содержат полярные группы, например, -NH2, -СООН, -ОН, -SH и другие. Кроме того, иногда витамины классифицируют по физиологическому действию на организм.
Ниже дана классификация по растворимости и в скобках - по физиологической роли витаминов:
витамины жирорастворимые:
А (антиксерофтальмический ); ретинол;
Д (антирахитический); кальциферолы;
Е (антистерильный, витамин размножения); токоферолы;
К (антигеморрагический); нафтохиноны;
витамины водорастворимые
B1 (антиневритный); тиамин;
В2 (витамин роста); рибофлавин;
В3 (антидерматитный); пантотеновая кислота;
В5 (РР) (антипеллагрический); ниацин; никотинамид;
В6 (антидерматитный); пиридоксин;
В9 (Вс) (антианемический); фолиевая кислота;
B12 (антианемический); кобаламин;
С (антискорбутный); аскорбиновая кислота;
Н (антисеборрейный); биотин;
Р (капилляроукрепляющий); рутин.
Витаминоподобные вещества также делят на жирорастворимые и водорастворимые. К первым относят витамин F (комплекс ненасыщенных жирных кислот) и убихинон. Ко вторым относятся холин, липоевая кислота, инозит, оротовая кислота, пангамовая кислота (В15), парааминобензойная кислота, S- метилметионин (витамин U).
Иногда витамины классифицируют по лечебно-профилактическому эффекту, выделяя отдельные группы витаминов, имеющих сходное физиологическое действие (табл.9).
Таблица 9. Групповая характеристика некоторых витаминов
Группы витаминов |
Краткая клинико-физиологическая характеристика |
Названия основных витаминов
|
1. Повышающие общую реакцию организма |
Регулируют функциональное состояние центральной нервной системы, обмен веществ и трофику тканей |
В1,В2, РР(В5), А,С |
2. Антигеморрагические (предотвращающие кровотечения и кровоизлияния) |
Обеспечивают нормальную проницаемость и устойчивость кровеносных сосудов, повышают свертываемость крови |
С,Р,К |
3. Антианемические |
Нормализуют и стимулируют кровотворение |
В12,ВС,С |
4. Антиинфекционные |
Повышают устойчивость организма к инфекции: стимулируют выработку антител, усиливают защитные свойства эпителия |
С,А |
5. Регулирующие зрение |
Усиливают остроту зрения, расширяют поле цветного зрения |
А,В2,С |
7.3. Жирорастворимые витамины
Витамин А (ретинол)
Химическая природа. Известны три витамина группы А: А1 (ретинол); А2; неовитамин А (цис-форма витамина А1). С химической точки зрения ретинол представляет собой циклический непредельный одноатомный спирт, состоящий из шестичленного кольца (β-ионона), двух остатков изопрена и первичной спиртовой группы:
Витамин А2, найденный у пресноводных рыб, имеет дополнительную двойную связь в β-иононовом кольце.
Все три витаминаа группы А - кристаллические вещества лимонно-желтого цвета, хорошо растворимы в жирах и жирорастворителях: бензоле, хлороформе, эфире, ацетоне и т.д. В организме ретинол (витамин А - спирт) превращается в ретиналь (витамин А - альдегид ) и ретиноевую кислоту (витамин А - кислота).
Известны три провитамина А - α -, β -, γ - каротины, отличающиеся по химическому строению и биологической активности. Наиболее активен β - каротин, который в слизистой кишечника подвергается окислению по центральной двойной связи с участием фермента каротиндиоксигеназы:
При этом образуются две молекулы активного ретиналя.
Биологическая роль. Все формы витамина А активны и оказывают влияние на барьерную функцию кожи, слизистых оболочек и других эпителиальных тканей. Механизм этого влияния до конца не ясен, но предполагают, что витамин А участвует в окислительно-восстановительных реакциях в процессе синтеза белков. Главная роль витамина А - участие в фотохимическом акте зрения и поддержание его остроты. Оказалось, что окисленная форма витамина А - ретиналь в виде цис - изомера является простетической группой белка опсина, образуя хромопротеид - родопсин, или зрительный пурпур - основное светочувствительное вещество сетчатки (ретины) глаза (отсюда и название "ретинол").
Гиповитаминоз А. Наиболее ранним признаком недостаточности А является ослабление зрения - сумеречная, или "куриная", слепота. Кроме того, возможна задержка роста в молодом возрасте, общее истощение и похудание. Специфическим признаком гиповитаминоза являются поражения эпителиальных тканей и слизистых оболочек - избыточное ороговение кожи и ее шелушение, сухость слизистых, в том числе и роговицы глаза, что ведет к ее воспалению (ксерофтальмии). Сухость кожи и слизистых оболочек способствует проникновению микробов в организм и развитию дерматитов, бронхитов, катаров дыхательных путей. Поэтому витамин "А" называют еще антиинфекционным.
Гипервитамииоз А - встречается чаще всего у жителей Севера, употребляющих иногда в пищу печень белого медведя, тюленя, моржа, содержащую много витамина А. Характерные проявления гипервитаминоза - воспаление глаз, гиперкаратоз, выпадение волос, общее истощение организма вследствие потери аппетита, тошноты, головной боли, бессоницы.
Распространение в природе и суточная потребность. Наиболее богаты этим витамином продукты животного происхождения: печень, яичный желток, цельное молоко, сметана, сливки. Много витамина А в печени морского окуня, трески, палтуса и других рыб. В растительных продуктах: моркови, томатах, свекле содержатся каротиноиды - провитамины А. Суточная потребность для взрослого человека составляет от 1 до 2,5 мг витамина А или от 2 до 5 мг β-каротина. Основной тканью, в которой частично накапливается витамин А, является печень, содержащая в норме 20 мг витамина А на 100 г.
Витамин Д (кальциферол)
Химическая природа. Витамин Д существует в виде нескольких витамеров. Для человека и животных являются активными Д2 и Д3 -производные холестерина:
Витамин Д2(эргокальцыиферол) |
Витамин Д3(холекальциферол) |
Витамины Д2 и Д3 - бесцветные кристаллы, не растворимые в воде, но хорошо растворимые в жирах, хлороформе, ацетоне, эфире и других жирорастворителях.
Биологическая роль. Витамин Д участвует в фосфорно-кальциевом обмене, выполняя и гормональную, и биокаталитическую функцию. Витамин Д регулирует транспорт ионов кальция и фосфора через клеточные мембраны и тем самым регулирует их уровень в крови. Эта регуляция основана, по крайней мере, на трех процессах, в которых участвует витамин Д: 1) транспорт ионов кальция и фосфата через эпителий слизистой тонкого кишечника при их всасывании; 2) мобилизация кальция из костной ткани; 3) реабсорция кальция и фосфора в почечных канальцах.
Гиповитаминоз Д проявляется в виде заболевания, названного рахитом. Рахит чаще бывает у детей, при этом снижается в крови уровень кальция и фосфора и нарушается минерализация костей, происходит их размягчение, что приводит к деформации костей скелета конечностей, черепа, грудной клетки. У взрослых Д - гиповитаминоз проявляется в хрупкости костей, что приводит к частым переломам. Относительная недостаточность витамина Д может быть и при нормальном его поступлении в организм, она проявляется при заболеваниях печени и особенно почек, так как эти органы принимают участие в образовании активных форм витамина Д.
Гипервитаминоз Д встречается очень редко и отмечен при приеме очень больших доз синтетитеского препарата витамина Д - возможен летальный исход. Уровень кальция и фосфатов в крови резко повышается (они извлекаются из костей, всасываются из кишечника и реабсорбируются в почках). Это приводит к кальцификации внутренних органов - сосудов, легких, почек и других.
Распространение в природе и суточная потребность. Наибольшее количество витамина Д содержится в продуктах животного происхождения: в печени, сливочном масле, желтке яйца, а также в дрожжах и растительных жирах. Наиболее богата витамином Д печень рыб, из нее получают рыбий жир, используемый для профилактики и лечения Д - гиповитаминоза.
Суточная потребность в витамине Д для детей колеблется от 12 до 25 мг, а для взрослых его нужно в десятки раз меньше.
Витамин Е (токоферолы)
Химическая природа. Витамин Е имеет три витамера: α, β и γ-токоферолы. По строению они очень близки. Самым активным является α - токоферол, который зачастую и называют витамином Е:
Различные токоферолы отличаются друг от друга числом и расположением метильных групп в бензольном кольце. Токоферолы - бесцветные маслянистые жидкости, хорошо растворимые в растительных маслах, спирте, эфирах. Химически устойчивы - выдерживают нагревание с концентрированной HCI до 100 °С и на воздухе до 170 °С, но быстро разрушаются под действием УФ-лучей.
Биологическая роль. По своему механизму действия токоферол является биологическим антиоксидантом, благодаря чему обеспечивает стабильность биологических мембран клеток организма. Токоферол совместно с селеном участвует в регуляции пероксидного окисления липидов (предохраняет от окисления полиненасыщенные жирные кислоты). Токоферол повышает биологическую активность витамина А, защищая его ненасыщенную боковую цепь от пероксидного окисления.
Гиповитаминоз Е у человека встречается очень редко. У экспериментальных животных недостаточность токоферола проявляется как патология мембран: нарушается устойчивость их к пероксидам, повышается проницаемость и потеря внутриклеточных компонентов, например, белков, для которых в норме мембрана непроходима. Патология мембран ведет к нарушению нормального развития эмбриона в организме матери, дегенеративному изменению репродуктивных органов, приводящему к стерильности, наблюдается мышечная дистрофия, жировая инфильтрация печени и мышечных тканей.
Распространение в природе и суточная потребность. Важнейшим источником токоферола для человека служат растительные масла (подсолнечное, кукурузное, хлопковое, оливковое, соевое и другие), а также салат, капуста и семена злаков. Из продуктов животного происхождения витамин Е содержится в мясе, сливочном масле, яичном желтке и др. Поскольку витамин Е откладывается во многих тканях организма, его гиповитаминоз почти не наблюдается, даже если этот витамин не поступает с пищей в течение нескольких месяцев. Суточная потребность взрослого человека в токофероле примерно 20-30мг.
Витамин К (нафтохиноны)
Химическая природа. Витамин К имеет два витамера - филлохинон (K1):
и менахинон (К2):
Витамин K1 - светло-желтая жидкость, неустойчивая при нагревании в щелочной среде и при облучении; витамин К2 - желтые кристаллы, такие же неустойчивые. K1 и К2 нерастворимы в воде, но хорошо растворимы в органических растворителях.
Биологическая роль, витамин К через ферментную систему участвует в синтезе протромбина в печени, тем самым регулируя процесс свертывания крови, и положительно влияет на состояние кровеносных сосудов.
Гиповитаминоз К приводит к заболеванию "геморрагия" - происходят самопроизвольные кровотечения (носовые, кровавая рвота, внутренние кровоизлияния), повышенная кровоточивость при травмах. У взрослых людей гиповитаминоз К встречается редко, так как кишечная флора полностью обеспечивает организм данным витамином. У грудных детей (пока не развита кишечная флора) причиной гиповитаминоза К может служить недостаток витамина К в пище. Основными причинами гиповитаминоза К являются: подавление кишечной флоры лекарственными средствами, заболевания печени и желчного пузыря, при которых нарушается образование желчных кислот (необходимых для всасывания витаминов). В медицинской практике используют препараты витамина К, и его синтетический аналог - викасол.
Распространение в природе и суточная потребность. Источником витамина К являются растительные (капуста, салат, зеленые томаты, зеленые части растений, тыква) и животные (печень) продукты. Суточная потребность для взрослого человека 1-2 мг.