
- •Основы биологической химии предисловие
- •Введение Предмет и задачи биохимии
- •Основные признаки живой материи
- •Глава 1. Химический состав организмов
- •Глава 2. Структура и свойства белков
- •2.1. Роль и определение белков.
- •2.2. Функции белков в организме
- •2.3. Элементный состав белков. Содержание белков в органах и тканях
- •2.4. Аминокислотный состав белков
- •2.5. Кислотно-основные свойства аминокислот
- •2.6. Стереохимия аминокислот
- •2.7. Строение белков
- •2.8. Уровни структурной организации белков
- •Первичная структура
- •Вторичная структура белков
- •Третичная структура белков
- •Четвертичная структура белков
- •2.9. Физико-химические свойства белков
- •Кислотно-основные свойства белков
- •Растворимость белков
- •Денатурация и ренатурация
- •2.10. Классификация белков
- •2.11. Методы выделения и очистки белков
- •Очистка белков
- •Глава 3. Углеводы
- •3.1. Понятие об углеводах и их классификация
- •3.2. Моносахариды
- •Оптические свойства моносахаридов
- •Структура моносахаридов
- •3.3. Химические свойства моносахаридов Реакции с участием карбонильной группы
- •Реакции с участием гидроксильных групп
- •3.4. Сложные углеводы
- •Олигосахариды
- •Полисахариды
- •Гомополисахариды
- •Гетерополисахариды
- •3.5. Биологические функции углеводов
- •Глава 4. Нуклеиновые кислоты
- •4.1. Общая характеристика нуклеиновых кислот
- •4.2. Химический состав и строение нуклеиновых кислот
- •4.3. Уровни структурной организации нуклеиновых кислот
- •Первичная структура нуклеиновых кислот
- •Вторичная структура днк
- •Вторичная структура рнк
- •Третичная структура рнк и днк
- •Глава 5. Липиды
- •5.1. Общая характеристика и классификация липидов
- •5.2. Липидные мономеры
- •5.3. Многокомпонентные липиды
- •5.4. Биологические функции липидов
- •Глава 6. Ферменты
- •6.2. Химическая природа и структура ферментов
- •6.3. Кофакторы ферментов Ионы металлов как кофакторы ферментов
- •Коферменты
- •6.4. Механизм действия ферментов
- •6.5. Свойства ферментов
- •6.6. Специфичность действия ферментов
- •6.7. Факторы, влияющие на скорость ферментативного катализа
- •Влияние температуры на активность ферментов
- •Влияние рН на активность ферментов
- •Влияние концентраций субстрата и фермента на скорость ферментативной реакции
- •Зависимость скорости реакции от времени
- •6.8. Регуляция активности ферментов
- •Активация ферментов
- •Ингибирование ферментов
- •Аллостерическая регуляций действия ферментов
- •6.9. Определение активности ферментов
- •6.10. Номенклатура и классификация ферментов
- •6.11. Локализация ферментов в организме и клетке
- •6.12. Применение ферментов
- •Глава 7. Витамины
- •7.1.Понятие о витаминах
- •7.2. Классификация витаминов
- •7.3. Жирорастворимые витамины
- •7.4. Водорастворимые витамины
- •7.5. Витаминоподобные вещества
- •Глава 8. Общие закономерности обмена веществ и энергии в организме
- •8.1. Обмен веществ
- •8.2. Обмен энергии
- •Глава 9. Биологическое окисление
- •9.2. Дыхательная цепь
- •9.3. Окислительное фосфорилирование
- •Глава 10. Обмен углеводов
- •10.1. Переваривание углеводов
- •10.2. Метаболизм глюкозы
- •10.3. Биосинтез гликогена
- •10.4. Распад гликогена
- •10.5. Анаэробный гликолиз
- •10.6. Аэробный распад глюкозы
- •Аэробный распад глюкозы в мозге
- •10.7. Пентозофосфатный цикл
- •10.8. Биосинтез глюкозы (глюконеогенез)
- •10.10. Регуляция обмена углеводов
- •Глава 11. Обмен липидов
- •11.1. Переваривание липидов
- •11.2. Метаболизм глицерина
- •11.3. Метаболизм жирных кислот
- •11.4. Биосинтез жиров
- •11.5. Регуляция обмена липидов
- •Глава 12. Обмен нуклеиновых кислот
- •12.1. Пути распада рнк и днк
- •12.2. Распад пуриновых и пиримидиновых оснований
- •12.3. Биосинтез нуклеотидов
- •Биосинтез пурииовых нуклеотидов
- •Биосинтез пиримидиновых нуклеотидов
- •Биосинтез дезоксирибонуклеотидов
- •12.4. Биосинтез нуклеиновых кислот
- •Биосинтез днк (репликация)
- •Биосинтез рнк (транскрипция)
- •Безматричный синтез рнк
- •12.5. Путь информации от генотипа к фенотипу
- •Глава 13. Обмен белков
- •13.1. Понятие об обмене белков
- •13.2. Переваривание белков пищи и распад белков тканей Переваривание белков
- •Распад белков в тканях
- •13.3. Метаболизм аминокислот
- •Трансаминирование аминокислот
- •Дезамииирование аминокислот
- •Превращение углеродных скелетов аминокислот. Реакции декарбоксилирования
- •13.4. Удаление аммиака из организма. Орнитиновый цикл
- •13.5. Синтез аминокислот
- •13.6. Биосинтез белков (трансляция)
- •Глава 14. Водно-солевой и минеральный обмен
- •14.1. Водно-солевой обмен Содержание воды в организме и клетке
- •Роль и функции воды в процессе жизнедеятельности
- •14.2. Регуляция водно-солевого обмена
- •Регуляция рН
- •14.3. Минеральный обмен Минеральные вещества
- •Функции минеральных веществ
- •Минеральные вещества и обмен нуклеиновых кислот
- •Минеральные вещества и обмен белков
- •Минеральные вещества и обмен углеводов и липидов
- •14.4. Регуляция минерального обмена
- •Глава 15. Взаимосвязь обмена белков, жиров, углеводов и нуклеиновых кислот
- •Глава 16. Гормоны, нервно-гормональная регуляция обмена веществ
- •16.1. Понятие о гормонах. Основные принципы регуляции обмена веществ
- •16.2. Классификация гормонов
- •16.3. Общие представления о действии гормонов
- •16.4. Гормоны щитовидной и паращитовидных желез Гормоны щитовидной железы
- •Гормоны паращитовидных желез
- •16.5. Гормоны поджелудочной железы
- •16.6. Гормоны надпочечников
- •16.7. Гормоны половых желез
- •16.8. Гормоны гипоталамо-гипофизарной системы
- •16.9. Гормоны тимуса и эпифиза
- •16.10. Простагландины
- •16.11. Биохимическая адаптация
- •Рекомендуемая литература
- •Оглавление
Вторичная структура рнк
Молекулы РНК в отличие от ДНК построены из одной полинуклеотидной цепи. Однако в этой цепи (для рРНК и мРНК) имеются комплементарные друг другу участки, которые могут взаимодействовать, образуя двойные спирали. При этом соединяются водородными связями нуклеотидные пары А-У и Г-Ц. Такие спирализованные участки (их называют шпильками) обычно содержат небольшое количество нуклеотидных пар (до 20-30) и чередуются с неспирализованными участками.
Характерную вторичную структуру имеют тРНК. Они содержат четыре спирализованных участка и три (четыре) одноцепочные петли. При изображении такой структуры на плоскости получается фигура, называемая «клеверным листом» (рис. справа).
Рис.. Вторичная (справа) и третичная (слева) структура тРНК
Все несколько десятков разных тРНК клетки имеют общий план пространственной структуры, но различаются в деталях. В тРНК выделяют следующие структурные участки.
1. Акцепторный конец - во всех типах тРНК имеет состав ЦЦА. К гидроксилу З'-ОН аденозина карбоксильной группой присоединяется аминокислота, которую данная тРНК доставляет к рибосомам, где происходит синтез белка.
2. Антикодоновая петля - содержит специфический для каждой тРНК триплет нуклеотидов (антикодоны). Антикодон комплементарен кодону мРНК. Кодон-антикодоновое взаимодействие определяет порядок чередования аминокислот в белковой молекуле при синтезе ее на рибосомах.
3. Псевдоуридиловая петля (Г,С) - участвует в связывании тРНК с рибосомой.
4. Дигидроуридиловая (D) петля необходима для связывания с ферментом аминоацил-тРНК-синтетзой, которая участвует в узнавании аминокислотой своей тРНК.
5. Добавочная петля - разная у разных тРНК.
Третичная структура рнк и днк
Пространственная конфигурация спирализованной полинуклеотидной цепи (третичная структура) достаточно полно выяснена для молекул РНК. Установлено, что нативные молекулы тРНК имеют примерно одинаковую третичную структуру, которая отличается от плоской структуры «клеверного листа» (вторичная структура) большей компактностью за счет складывания различных частей молекулы (см. рис выше).
Для рРНК и мРНК возможно существование, а зависимости от концентрации солей и температуры, трех видов третичной структуры (рис. ниже). Первый - рыхлый беспорядочный клубок или распрямленная цепь (при повышении температуры и отсутствии солей). Второй вариант - компактный клубок с двуспиральными участками (высокая ионная сила, комнатная температура). Третий вид - компактная палочка с упорядочение ориентированными двуспиральными участками (низкая ионная сила, комнатная температура). Все три типа третичной структуры РНК связаны взаимными переходами.
Третичная структура ДНК зависит от того, сколько цепочек полинуклеотидов (одна или две) в ДНК. В ряде вирусов обнаружены одноцепочечные ДНК линейной и кольцевой формы. Двуцепочечные спиралевидные молекулы ДНК также могут существовать в линейной и кольцевой форме; образование последней вызвано ковалентным соединением их открытых концов.
Рис. Третичная структура: А - ДНК: 1 - линейная одноцепочечная бактериофаг ФХ174 (и др. вирусов); 2 - кольцевая одноцепочечная ДНК вирусов и митохондрий; 3 - кольцевая двойная спираль ДНК; Б - РНК: 1 - рыхлый клубок или распрямленная цепь; 2 - компактная палочка; 3 - компактный клубок
Кроме того, полагают, что биспиральные молекулы ДНК существуют в хромосомах в виде вторично спирализованных фрагментов, связанных друг с другом (суперспираль). Поэтому молекулярный вес нативной ДНК достигает нескольких сотен миллионов. Следовательно, молекулы с молекулярной массой 10.000.000 являются субъединицами более крупных молекулярных образований (третичная структура). Именно суперспирализация обеспечивает экономную упаковку огромной молекулы ДНК в хромосоме: вместо 8 см длины, которую она могла бы иметь в вытянутой форме, она занимает всего 5 нм.