
- •Основы биологической химии предисловие
- •Введение Предмет и задачи биохимии
- •Основные признаки живой материи
- •Глава 1. Химический состав организмов
- •Глава 2. Структура и свойства белков
- •2.1. Роль и определение белков.
- •2.2. Функции белков в организме
- •2.3. Элементный состав белков. Содержание белков в органах и тканях
- •2.4. Аминокислотный состав белков
- •2.5. Кислотно-основные свойства аминокислот
- •2.6. Стереохимия аминокислот
- •2.7. Строение белков
- •2.8. Уровни структурной организации белков
- •Первичная структура
- •Вторичная структура белков
- •Третичная структура белков
- •Четвертичная структура белков
- •2.9. Физико-химические свойства белков
- •Кислотно-основные свойства белков
- •Растворимость белков
- •Денатурация и ренатурация
- •2.10. Классификация белков
- •2.11. Методы выделения и очистки белков
- •Очистка белков
- •Глава 3. Углеводы
- •3.1. Понятие об углеводах и их классификация
- •3.2. Моносахариды
- •Оптические свойства моносахаридов
- •Структура моносахаридов
- •3.3. Химические свойства моносахаридов Реакции с участием карбонильной группы
- •Реакции с участием гидроксильных групп
- •3.4. Сложные углеводы
- •Олигосахариды
- •Полисахариды
- •Гомополисахариды
- •Гетерополисахариды
- •3.5. Биологические функции углеводов
- •Глава 4. Нуклеиновые кислоты
- •4.1. Общая характеристика нуклеиновых кислот
- •4.2. Химический состав и строение нуклеиновых кислот
- •4.3. Уровни структурной организации нуклеиновых кислот
- •Первичная структура нуклеиновых кислот
- •Вторичная структура днк
- •Вторичная структура рнк
- •Третичная структура рнк и днк
- •Глава 5. Липиды
- •5.1. Общая характеристика и классификация липидов
- •5.2. Липидные мономеры
- •5.3. Многокомпонентные липиды
- •5.4. Биологические функции липидов
- •Глава 6. Ферменты
- •6.2. Химическая природа и структура ферментов
- •6.3. Кофакторы ферментов Ионы металлов как кофакторы ферментов
- •Коферменты
- •6.4. Механизм действия ферментов
- •6.5. Свойства ферментов
- •6.6. Специфичность действия ферментов
- •6.7. Факторы, влияющие на скорость ферментативного катализа
- •Влияние температуры на активность ферментов
- •Влияние рН на активность ферментов
- •Влияние концентраций субстрата и фермента на скорость ферментативной реакции
- •Зависимость скорости реакции от времени
- •6.8. Регуляция активности ферментов
- •Активация ферментов
- •Ингибирование ферментов
- •Аллостерическая регуляций действия ферментов
- •6.9. Определение активности ферментов
- •6.10. Номенклатура и классификация ферментов
- •6.11. Локализация ферментов в организме и клетке
- •6.12. Применение ферментов
- •Глава 7. Витамины
- •7.1.Понятие о витаминах
- •7.2. Классификация витаминов
- •7.3. Жирорастворимые витамины
- •7.4. Водорастворимые витамины
- •7.5. Витаминоподобные вещества
- •Глава 8. Общие закономерности обмена веществ и энергии в организме
- •8.1. Обмен веществ
- •8.2. Обмен энергии
- •Глава 9. Биологическое окисление
- •9.2. Дыхательная цепь
- •9.3. Окислительное фосфорилирование
- •Глава 10. Обмен углеводов
- •10.1. Переваривание углеводов
- •10.2. Метаболизм глюкозы
- •10.3. Биосинтез гликогена
- •10.4. Распад гликогена
- •10.5. Анаэробный гликолиз
- •10.6. Аэробный распад глюкозы
- •Аэробный распад глюкозы в мозге
- •10.7. Пентозофосфатный цикл
- •10.8. Биосинтез глюкозы (глюконеогенез)
- •10.10. Регуляция обмена углеводов
- •Глава 11. Обмен липидов
- •11.1. Переваривание липидов
- •11.2. Метаболизм глицерина
- •11.3. Метаболизм жирных кислот
- •11.4. Биосинтез жиров
- •11.5. Регуляция обмена липидов
- •Глава 12. Обмен нуклеиновых кислот
- •12.1. Пути распада рнк и днк
- •12.2. Распад пуриновых и пиримидиновых оснований
- •12.3. Биосинтез нуклеотидов
- •Биосинтез пурииовых нуклеотидов
- •Биосинтез пиримидиновых нуклеотидов
- •Биосинтез дезоксирибонуклеотидов
- •12.4. Биосинтез нуклеиновых кислот
- •Биосинтез днк (репликация)
- •Биосинтез рнк (транскрипция)
- •Безматричный синтез рнк
- •12.5. Путь информации от генотипа к фенотипу
- •Глава 13. Обмен белков
- •13.1. Понятие об обмене белков
- •13.2. Переваривание белков пищи и распад белков тканей Переваривание белков
- •Распад белков в тканях
- •13.3. Метаболизм аминокислот
- •Трансаминирование аминокислот
- •Дезамииирование аминокислот
- •Превращение углеродных скелетов аминокислот. Реакции декарбоксилирования
- •13.4. Удаление аммиака из организма. Орнитиновый цикл
- •13.5. Синтез аминокислот
- •13.6. Биосинтез белков (трансляция)
- •Глава 14. Водно-солевой и минеральный обмен
- •14.1. Водно-солевой обмен Содержание воды в организме и клетке
- •Роль и функции воды в процессе жизнедеятельности
- •14.2. Регуляция водно-солевого обмена
- •Регуляция рН
- •14.3. Минеральный обмен Минеральные вещества
- •Функции минеральных веществ
- •Минеральные вещества и обмен нуклеиновых кислот
- •Минеральные вещества и обмен белков
- •Минеральные вещества и обмен углеводов и липидов
- •14.4. Регуляция минерального обмена
- •Глава 15. Взаимосвязь обмена белков, жиров, углеводов и нуклеиновых кислот
- •Глава 16. Гормоны, нервно-гормональная регуляция обмена веществ
- •16.1. Понятие о гормонах. Основные принципы регуляции обмена веществ
- •16.2. Классификация гормонов
- •16.3. Общие представления о действии гормонов
- •16.4. Гормоны щитовидной и паращитовидных желез Гормоны щитовидной железы
- •Гормоны паращитовидных желез
- •16.5. Гормоны поджелудочной железы
- •16.6. Гормоны надпочечников
- •16.7. Гормоны половых желез
- •16.8. Гормоны гипоталамо-гипофизарной системы
- •16.9. Гормоны тимуса и эпифиза
- •16.10. Простагландины
- •16.11. Биохимическая адаптация
- •Рекомендуемая литература
- •Оглавление
Гомополисахариды
К числу наиболее распространенных гомополисахаридов принадлежат крахмал, гликоген (животный крахмал) - резервные полисахариды и целлюлоза (клетчатка) - структурный полисахарид. Все они являются полигликозидами, в молекулах которых за счет эфирных (кислородных) мостиков объединяются сотни, тысячи и десятки тысяч остатков моносахаридов. Эфирные мостики образуются за счет взаимодействия гликозидного гидроксила одного остатка моносахарида со спиртовым гидроксилом ( чаще всего у 4-го атома С - для линейных форм, 4-го и 6-го - у разветвленных форм) другого остатка моносахарида.
Крахмал - один из самых распространенных гомополисахаридов, содержится в зернах злаков (пшеница, кукуруза) и в клубнях растений (картофель и др.). Он нерастворим в холодной воде, а в горячей образует коллоидный раствор - клейстер. Крахмал - природный полимер, мономером которого является D-глюкоза. Состоит из двух различных фракций, различающихся по своему строению и свойствам: амилозы (~20%) и амилопектина, общая формула которых одинакова (С6Н10О5)n.
Амилоза - линейный полисахарид - остатки D-глюкозы соединены α-1,4-глюкозидными связями; она имеет молекулярную массу от 20000, до 200000 Да, в водной среде амилоза образует двухспиральные структуры. Ее коллоидные частицы (мицеллы) дают с йодом характерное синее окрашивание.
Амилопектин - разветвленный полисахарид с молекулярной массой от 100000 до 1 млн Да. Примерно через 15-25 моносахаридных звеньев у него имеются точки ветвления, образованные α-1,6-глюкозидмыми связями:
Участок молекулы амилопектина
Коллоидные растворы амилолектина дают с йодом красно-фиолетовое окрашивание.
Компоненты крахмала прочно связываются в клетке с белком, образуя смешанные макромолекулы. Возможно, что синтез крахмала, т.е. удлинение полисахаридных цепей, происходит на белковой основе. Очевидно, белковая часть придает полисахариду некоторую способность к диффузии внутри клетки.
При частичном гидролизе крахмала образуются полисахариды с меньшей степенью полимеризации - декстрины, при полном гидролизе - мальтоза и глюкоза. Крахмал - наиболее важный пищевой углевод для человека, содержание его в муке 75-80%, в картофеле - 25%.
Гликоген - является главным резервным гомополисахаридом в организме человека и животных. Поэтому его называют «животный крахмал», однако он найден в грибах, дрожжах и зернах кукурузы. Гликоген содержится почти во всех органах и тканях животных и человека, но больше всего в печени и в мышцах. Молекулярная масса гликогена 105-108Да и выше. Гликоген по строению близок к амилолектину, но отличается большой разветвленностью цепей. В молекуле гликогена различают внутренние цепи - участки полиглюкозидных цепей между точками ветвления, и наружные цепи - участки от периферической точки ветвления до конца цепи. В цепях остатки глюкозы соединены α-1,4-глюкозидными связями, а в точках ветвления - α-1,6-глюкозидные связи.
Рис. Строение молекулы гликогена (по Майеру): белые, кружки - остатки глюкозы, соединенные α-1,4 - связью; черные - остатки глюкозы, соединенные α-1,6-связью
При гидролизе гликоген распадается, как и крахмал, сначала до декстринов, затем до мальтозы и, наконец, до глюкозы. Распад гликогена носит название гликогенолиза и обеспечивает потребность организма в энергии для поддержания температуры тела, осуществления мышечного сокращения, протекания биохимических реакций и т.д.
В клетке гликоген, как и крахмал, связан с белком цитоплазмы и частично белком внутриклеточных мембран.
Целлюлоза (клетчатка) - наиболее распространенный гомополисахарид растительного мира: в древесине 50 - 70% клетчатки, в стеблях волокнистых растений (лен) еще больше, а волокно хлопка - почти чистая, клетчатка. Она играет большую роль в построении клеточных стенок (название целлюлоза - от латинского "целлюла" - клетка).
Клетчатка так же, как и крахмал, построена из остатков D-глюкозы, но в отличие от крахмала - это β-полиглюкозид: с молекулярной массой 5·104- ·106 Да. Ниже представлен фрагмент молекулы целлюлозы:
При частичном гидролизе клетчатки образуется дисахарид целлобиоза, а при полном гидролизе – D-глюкоза.